

Technical and Test Institute for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

www.eota.eu

European Technical Assessment

ETA 15/0704 of 22/10/2015

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW steel bonded anchor
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and non-cracked concrete
Manufacturer	JCP Owlett-Jaton. Opal Way, Stone Business Park, Stone, Staffordshire, ST15 0SW. United Kingdom
Manufacturing plant	JCP Plant 1 United Kingdom
This European Technical Assessment contains	22 pages including 18 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	ETAG 001-Part 1 and Part 5, edition 2013, used as European Assessment Document (EAD)

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

€ 01234 333949 FAX- 01234 211069 ⊡ info@fasteners-ft.co.uk www.fastenersfixingsandtools.co.uk

1. Technical description of the product

The High Load Vinylester JFV380SF and High Load Vinylester Fast Cure / Winter Grade JFEA410SFW (faster curing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with embedment depth from 8 diameters to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads - threaded rod	See Annex C 1
Characteristic resistance for tension loads - rebar	See Annex C 2
Characteristic resistance for shear loads - threaded rod	See Annex C 3
Characteristic resistance for shear loads - rebar	See Annex C 4
Characteristic resistance for tension loads - threaded rod	See Annex C 5
Characteristic resistance for tension loads - rebar	See Annex C 6
Characteristic resistance for shear loads - threaded rod	See Annex C 7
Characteristic resistance for shear loads - rebar	See Annex C 8
Displacement for threaded rod	See Annex C 9
Displacement for rebar	See Annex C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	-	1

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European Technical Assessment.

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

The manufacturer shall, on the basis of a contract, involve a body which is notified for the tasks referred to in section 4 in the field of anchors in order to undertake the actions laid down in section 5.2. For this purpose, the control plan referred to in this section and section 5.2 shall be handed over by the manufacturer to the notified body involved.

The manufacturer shall make a declaration of performance, stating that the construction product is in conformity with the provisions of this European Technical Assessment.

¹ Official Journal of the European Communities L 254 of 08.10.1996

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.

Issued in Prague on 22.10.2015

By

Ing. Mária Schaan Head of the Technical Assessment Body

Reinforcing bar

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Product description Installed conditions	Annex A 1

Coaxial cartridge High Load Vinylester JFV380SF, JFEA410SFW	150 ml 380 ml 400 ml	
Side by side contrides	410 ml	
Side by side cartridge	222200	
High Load Vinylester JFV380SF, JFEA410SFW	350 ml	
		- mail 1
		"Land
Two part foil in a single piston component	cartridge	9
High Load Vinylester JFV380SF, JFEA410SFW	150 ml	
	170 ml	
	300 ml	

Marking of the mortar cartridges Identifying mark of the producer, Trade name, Charge code number, Storage life, Curing and processing time

Annex A 2

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material
	, zinc plated ≥ 5 μm acc. to EN ISC Hot-dip galvanized ≥ 40 μm acc.) 4042 or to EN ISO 1461 and EN ISO 10684
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
Stain	less steel	
1	Anchor rod	Material: A4-70, A4-80, EN ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
High	corrosion resistant steel 1.4529	
1	Anchor rod	Material: 1.4529, EN 10088-1
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod

*Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

High Load Vinylester JFV380SF,	
High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Product description	Annex A 3
Threaded rod and materials	

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form		Bars and de	-coiled rods
Class		В	С
Characteristic yield strength fyk or f0.2k (MPa)		400 to 600	
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at maximum for	orce ε _{uk} (%)	≥ 5,0	≥ 7,5
Bendability		Bend/Rebend test	
Maximum deviation from nominal mass (individual bar) (%)	Nominal bar size (mm) ≤ 8 > 8		6,0 1,5
Bond: Minimum relative rib area, f _{R,min}	Nominal bar size (mm) 8 to 12 > 12	1.41 P.0)40)56

High Load Vinylester JFV380SF,	
High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Product description	Annex A 4
Rebars and materials	

Page 8 of 22 ETA 15/0704 issued on 22/10/2015

Specifications of intended use

Anchorages subject to:

Static and quasi-static load.

Base materials

- Non-cracked concrete.
- Cracked and non-cracked concrete for threaded rod size M10, M12, M16, M20, M24
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

-40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- Structures subject to external atmospheric exposure including industrial and marine environment, if
 no particular aggressive conditions exist (stainless steel, high corrosion resistance steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel, high corrosion resistance steel).
- Structures subject to permanently damp internal condition, with particular aggressive conditions exist (high corrosion resistance steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use categories:

Category 2 – installation in dry or wet concrete or in flooded hole.

Design:

- The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors" under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Dry or wet concrete or flooded hole.
- · Hole drilling by rotary drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Intended use Specifications	Annex B 1

Applicator gun	A	В	с	D	E
Cartridge	Coaxial 380ml 400ml 410ml	Side by side 350ml	Foil capsule 150ml 300ml	Foil capsule 150ml 300ml	Coaxial 150ml

Cleaning brush

-

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Intended use	Annex B 2
Applicator guns	
Cleaning brush	C

Installation instructions

- Drill the hole to the correct diameter and depth using a rotary percussion drilling machine.
- Thoroughly clean the hole in the following sequence using a brush with the required extensions and a blow pump:

Blow Clean x2. Brush Clean x2. Blow Clean x2. Brush Clean x2. Blow Clean x2.

Remove standing water from the hole prior to cleaning to achieve maximum performance.

- Select the appropriate static mixer nozzle for the installation, open the cartridge/cut foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator (gun).
- Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and fit the correct resin stopper to the other end.
- 6. Insert the mixer nozzle (or the extension tube with resin stopper when necessary) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.
- Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- Excess resin will be expelled from the hole evenly around the steel element showing that the hole is full.
 This excess resin should be removed from around the mouth of the hole before it sets.
- Leave the anchor to cure.
 Do not disturb the anchor until the appropriate loading time has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW

Intended use

Installation procedure

Annex B 3

Page 11 of 22 ETA 15/0704 issued on 22/10/2015

Size				M8	M10	N	112	M16	M20	M24	M27	M30
Nominal drill hole diamete	r Ød	lo	[mm]	10	12		14	18	22	26	30	35
Diameter of cleaning brush		db	[mm]	14	14		20	20	29	29	40	40
Torque moment	Tir	ist	[Nm]	10	20	<u> </u>	40	80	150	200	240	275
h _{ef,min} = 8d						-						
Depth of drill hole	1	10	[mm]	64	80		96	128	160	192	216	240
Minimum edge distance	Cm		[mm]	35	40		50	65	80	96	110	120
Minimum spacing	Sm	_	[mm]	35	40		50	65	80	96	110	120
Minimum thickness of mer	nber h _{rr}	nin	[mm]	hef +	- 30 mn	n≥	100	mm		hef	+ 2d ₀	
hef,max = 20d												
Depth of drill hole	ł	10	[mm]	160	200	2	240	320	400	480	540	600
Minimum edge distance	Cm	in	[mm]	80	100	1	120	160	200	240	270	300
Minimum spacing	Sn	nin	[mm]	80	100		120	160	200	240	270	300
Minimum thickness of mer	nber h _{rr}	nin	[mm]	hef +	- 30 mm	n≥	100	mm		her	+ 2d ₀	
Cable DQ, lastallation as												
Table B2: Installation pa	rameters of rebar	_		0	Lau				in I	(100 L	ant	000
Size	~			Ø8	Ø10	_	Ø1		16	Ø20	Ø25	Ø32
Nominal drill hole diamete		-	[mm]	12	14	_	16		20	25	32	40
Diameter of cleaning brush	1 (db	[mm]	14	14		19		22	29	40	42
h _{ef.min} = 8d		_				_			00	100		050
Depth of drill hole		ho	[mm]	64	80		96		28	160	200	256
Minimum edge distance	Cn		[mm]	35	40		50		65	80	100	130
Minimum spacing		nin	[mm]	35	40 ef + 30 I		50		35	80	100	130
Minimum thickness of mer	nber h _n	nin	[mm]	n	ef + 30 I	nn	1210	JU mm		1	her + 2do	
h _{ef,max} = 20d			<i>(</i>)	1 100	0.00	2	0.4		00	400	600	0.10
Depth of drill hole		no	[mm]	160	200		24		20	400	500	640
Minimum edge distance Minimum spacing		nin	[mm]	80 80	100		12		60 60	200	250 250	320 320
Minimum thickness of mer		nin	[mm] [mm]		ef + 30 I				00		250 Ter + 2do	
Table B3: Cleaning All diameters - 2 x blowing - 2 x brushing - 2 x blowing - 2 x blowing	ng time											
High Load Vinylester JFV3	ten de la companya de											
Application temperature	Processing time		Load	time								
+5 to +10°C	10 mins		145 r									
+10 to +15°C	8 mins	T	85 m									
+15 to +20°C	6 mins		75 m	the state of the s								
+20 to +25°C	5 mins		50 m									
+25 to +30°C	4 mins		40 m	nins								
Processing time refers to the Load time refers to the lowest Cartridge must be conditioned	t temperature in the ran				_							
High Load Vinylester Fast	Cure / Winter Grade	JF	EA410S	W								
Application temperature	the state of the second st		Load									
		_										

Application temperature	Processing time	Load time				
-10 to -5°C	50 mins	12 hours				
-5 to 0°C	15 mins	100 mins				
0 to +5°C	10 mins	75 mins				
+5 to +20°C	5 mins	50 mins				
+20°C	100 second	20 mins				

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range. Cartridge must be conditioned to a minimum 0°C.

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW

Intended use Installation parameters Curing time Annex B 4

Page 12 of 22 ETA 15/0704 issued on 22/10/2015

Steel failure – Characteristic	, 1031310	mee		1.10	1.110	1 1140	1.1.1.0	1.100	1404	1107	
Size				M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6		NRk,s	[kN]	15	23	34	63	98	141	184	224
Partial safety factor		γMs ¹⁾	[-]		1			2			
Steel grade 5.8		NRk,s	[kN]	18	29	42	79	123	177	230	281
Partial safety factor		γMs ¹⁾	[-]		-		_	,5			
Steel grade 8.8		NRk.s	[kN]	29	46	67	126	196	282	367	449
Partial safety factor		YMs ¹⁾	[-]		-	-		,5			
Steel grade 10.9		NRk,s	[kN]	37	58	84	157	245	353	459	561
Partial safety factor		γMs ¹⁾	[-]					,4			
Stainless steel grade A4-70		NRk,s	[kN]	26	41	59	110	172	247	321	393
Partial safety factor		γMs ¹⁾	[-]				-	,9			
Stainless steel grade A4-80		N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor		γMs ¹⁾	[-]					,6			
Stainless steel grade 1.4529		NRk,s	[kN]	26	41	59	110	172	247	321	393
Partial safety factor		γMs ¹⁾	[-]				1	,5			
Combined pullout and conc	rete cor	ne fail	ure in I	non-c	racked	conc	rete C2	20/25			
Size								16 M2	0 M2	4 M27	7 M3
Characteristic bond resistar	nce in n	on-cra	acked (concr	ete						
Dry and wet concrete		TRk	[N/m	m ²]	11	10 9	,5 9	8,5	5 8	6,5	5,5
Partial safety factor		γMc ¹⁾	[-]				1,82)			2	,13)
Flooded hole		TRk	[N/m	m ²]	9	8 7	,5 7	7 7	6		/
Partial safety factor		γMc ¹⁾	[-]	1				2,13)			
Factor for concrete C50/60		Ψα	[-]		1			1			
Combined pullout and conc	rete cor	ne fail	ure in (crack	ed con	crete	C20/25	£			
Size					M10	M	_	M16	M2	0	M24
Characteristic bond resistar	nce in c	racked	d conc	rete							
Dry and wet concrete		TRk	[N/m	m ²]	5	1	5	5	4,5	5	4,5
Partial safety factor		YMc ¹⁾	[-]		-	25		1,82)	254 		
Flooded hole		TRk	[N/m	m ²]	5	5	5	5	4,5	5	4,5
Partial safety factor		YMc ¹⁾	[-]	1				2,13)			
	C30/37							1,12			
Factor for cracked concrete	C40/50 C50/60	Ψο	[-]	1				1,23 1,30			
Splitting failure											
Size					M8 N	/10 M	12 M	16 M2	0 M24	4 M27	M3
Edge distance		Ccr.sp	[mr	m]			5	1,5hef			

Table C1: Design method TR 029 Characteristic values of resistance to tension load of threaded rod

1) In absence of national regulations

Partial safety factor

²⁾ The partial safety factor γ_2 =1,2 is included

³⁾ The partial safety factor $\gamma_2=1,4$ is included

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances	Annex C 1
Design according to TR 029	12.0000 (00.000 00.000 00.000 (00.000)
Characteristic resistance for tension loads - threaded rod	

[-]

1,8

YMsp¹⁾

Page 13 of 22 ETA 15/0704 issued on 22/10/2015

 Table C2: Design method TR 029

 Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance											
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270	442		
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,4					

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance	in non-cra	cked conc	rete						
Dry and wet concrete	TRk	[N/mm ²]	12	10	10	9	9	9	5,5
Partial safety factor	γ _{Mc} ¹⁾	[-]				1,82)			
Flooded hole	TRk	[N/mm ²]	12	10	10	9	9	9	5,5
Partial safety factor	γMc ¹⁾	[-]				2,13)			
Factor for concrete C50/60	Ψc	[-]				1			

Splitting failure											
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Edge distance	Ccr.sp	[mm]	1,5hef								
Spacing	Scr,sp	[mm]	3,0hef								
Partial safety factor	γ _{Msp} ¹⁾	[-]	1,8								

¹⁾ In absence of national regulations

²⁾ The partial safety factor γ_2 =1,2 is included ³⁾ The partial safety factor γ_2 =1,4 is included

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances	Annex C 2
Design according to TR 029	
Characteristic resistance for tension loads - rebar	

Page 14 of 22 ETA 15/0704 issued on 22/10/2015

Table C3: Design method TR 029 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm							_						
Size			M8	M10	M12	M16	M20	M24	M27	M30			
Steel grade 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112			
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	67						
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140			
Partial safety factor	γ _{Ms} ¹⁾	[-]			200 m 20	1,	25						
Steel grade 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224			
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	25						
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177	230	281			
Partial safety factor	γ _{Ms} ¹⁾	[-]		÷		1	,5		230 28				
Stainless steel grade A4-70	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196			
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	56						
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224			
Partial safety factor	γMs ¹⁾	[-]				1,	33						
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196			
Partial safety factor	γ _{Ms} 1)	[-]		1		1,	25						

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	M ^o Rk,s	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	67			
Steel grade 5.8	M ^o Rk,s	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	25			
Steel grade 8.8	M ^o Rk,s	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs ¹⁾	[-]				1,	25			
Steel grade 10.9	M ^o Rk,s	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γ _{Ms} ¹⁾	[-]	[-] 1,50							
Stainless steel grade A4-70	M ^o Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	56			
Stainless steel grade A4-80	M ^o Rk,s	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	33			
Stainless steel grade 1.4529	M ^o Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs ¹⁾	[-]				1,	25			
Concrete pryout failure										
Factor k from TR 029	141 C.	Î				1	2			
Design of bonded anchors, Part 5	.2.3.3		2							
Partial safety factor	γMp ¹⁾	[-]	1			1	,5			

Concrete edge failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
See section 5.2.3.4 of Technic	al Report TR 029	for th	ne De	sign of	Bond	ed And	chors			
Partial safety factor	γMc ¹⁾	[-]				1	,5			

1) In absence of national regulations

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances	Annex C 3
Design according to TR 029	
Characteristic resistance for shear loads - threaded rod	

Page 15 of 22 ETA 15/0704 issued on 22/10/2015

Table C4: Design method TR 029 Characteristic values of resistance to shear load of rebar

Steel failure without lever an	m							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s} [k]	I] 14	22	31	55	86	135	221
Partial safety factor	γ _{Ms} ¹⁾ [-				1,5			

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	M ^o Rk,s	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γms ¹⁾	[-]				1,5			
Concrete pryout failure									
Factor k from TR 029						2			
Design of bonded anchors, Par	t 5.2.3.3					2			
Partial safety factor	γMp ¹⁾	[-]				1,5			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
See section 5.2.3.4 of Technic	al Report TR 029	9 for th	ne Des	ign of E	Bonded	Ancho	rs		
Partial safety factor	γMc ¹⁾	[-]	1,5						

¹⁾ In absence of national regulations

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances Design according to TR 029	Annex C 4
Characteristic resistance for shear loads - rebar	

	sistance			1						
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	NRk,s	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms} ¹⁾	[-]		1			2			
Steel grade 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs ¹⁾	[-]	-	1 10			,5			
Steel grade 8.8	NRk.s	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γ _{Ms} ¹⁾	[-]	07	1 50	0.1		,5	0.50	450	504
Steel grade 10.9	NRk.s	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γ _{Ms} ¹⁾	[-]		1 44	50		,4	0.47	004	000
Stainless steel grade A4-70	NRk,s	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γ _{Ms} ¹⁾	[-]	- 00	10	07	the second s	,9	000	007	140
Stainless steel grade A4-80	NRk,s	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γ _{Ms} ¹⁾	[-]	- 00	1 44	60		,6	047	204	202
Stainless steel grade 1.4529 Partial safety factor	N _{Rk,s} γ _{Ms} ¹⁾	[kN]	26	41	59	110	172	247	321	393
		[-]								
Combined pullout and concrete	e cone fai	lure in I	non-c	the second s	the second s	the second s	the second s			
Size	-				110 M	12 M	16 M2	0 M2	4 M27	7 M3
Characteristic bond resistance	in non-cr	_			-					-
Dry and wet concrete	TRk	[N/m		11	10 9	,5 9	8,5	5 8	6,5	
Partial safety factor	γMc ¹⁾	-		-		1,82)			2	2,13)
Flooded hole	TRk	[N/m		9	8 7	,5 7		6	-	_
Partial safety factor	γ _{Mc} ¹⁾	[-]		_			2,13)			
Factor for concrete C50/60	Ψα	E		-			1			
Factor according to CEN/TS 1992-	4-5 Section	16.2.2	k ₈				10,1			
Combined pullout and concrete	e cone fai	lure in o	crack	ed con	crete (20/25	j			
Size				M10	M1	12	M16	M2	0	M24
Characteristic bond resistance	in cracke	d conc	rete							
Dry and wet concrete	TRk	[N/m	m ²]	5	5		5	4,5		4,5
Partial safety factor	41		_					1. 7.8	· · · · ·	
a and barbly rabit	YMc ¹⁾	[-]					1,82)			
Flooded hole	γ _{Mc} ¹⁾ τ _{Rk}	[N/m		5	5	; [1,8 ²⁾ 5	4,5		4,5
	TRk	[N/m	m ²]		5		1,82)			4,5
Flooded hole Partial safety factor	24030400	[N/m	m ²]		5		1,8 ²⁾ 5 2,1 ³⁾			4,5
Flooded hole Partial safety factor	τεκ γ _{Mc} 1) 0/37	[N/m	m²]]		5		1,8 ²⁾ 5			4,5
Flooded hole Partial safety factor C30 Factor for cracked concrete C40	τεκ γ _{Mc} ¹⁾ D/37	[N/m [-]	m²]]		5		1,8 ²⁾ 5 2,1 ³⁾ 1,12			4,5
Flooded hole Partial safety factor C30 Factor for cracked concrete C40	τ _{Rk} γ _{Mc} ¹⁾ 0/37 0/50 ψ _c 0/60	[N/m [-]	m²]]		5		1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23			4,5
Flooded hole Partial safety factor C30 Factor for cracked concrete C50 Factor according to CEN/TS 1992-	τ _{Rk} γ _{Mc} ¹⁾ 0/37 0/50 ψ _c 0/60	[N/m [-]	m²]]		5	;]	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30			4,5
Flooded hole Partial safety factor C30 Factor for cracked concrete C50 Factor according to CEN/TS 1992- Concrete cone failure	τ _{Rk} γ _{Mc} ¹⁾ 0/37 0/50 ψ _c 0/60	[N/m [-]	m²]]	5			1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section	[N/m [-] [-] 16.2.2	m²]]] k ₈	5	5 110 M		1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C50 Factor according to CEN/TS 1992- Concrete cone failure	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section	[N/m [-] [-] 16.2.2	m²]]	5			1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section	[N/m [-] [-] 16.2.2	m ²]] k ₈ <u>k₀cr</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 16 M2 10,1	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section 4-5 Section	[N/m [-] [-] 0 6.2.2	m ²]] k ₈ <u>k₀cr n]</u>	5		12 M	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 16 M2 10,1 7,2	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section 4-5 Section Cor,N	[N/m [-] [-] [-] [-] [-] [-] [-]	m ²]] k ₈ <u>k₀cr n]</u>	5		12 M	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 16 M2 10,1 7,2 1,5hef	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing	τεκ γ _{Mc} ¹⁾ 0/37 0/50 ψc 0/60 4-5 Section 4-5 Section Cor,N	[N/m [-] [-] [-] [-] [-] [-] [-] [-] [-] [-]	m ²]] k ₈ <u>k₀r n] n]</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 16 M2 10,1 7,2 1,5hef 3,0hef	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance Spacing	TRk γMc ¹⁾ D/37 D/50 ψc D/60 4-5 Section 4-5 Section Cor,N Scr,N Cor,sp Scr,sp	6.2.3 [mr [mr [mr	m ²]] k ₈ <u>k_{uor} k_{or} n] n] n]</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 10,1 7,2 10,1 7,2 1,5h _{ef} 3,0h _{ef}	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance	TRk γMc ¹⁾ D/37 D/50 Ψc D/60 4-5 Section 4-5 Section Cor.N Scr.N Cor.sp	6.2.3 [mr [mr [mr	m ²]] k ₈ <u>k₀cr n] n] n]</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 16 M2 10,1 7,2 1,5hef 3,0hef	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance Spacing Partial safety factor ¹⁾ In absence of national regulations ²⁾ The partial safety factor γ_2 =1,2 is in	TRk γMc ¹⁾ D/37 D/50 ψc D/60 4-5 Section 4-5 Section Cor.N Scr.N Ccr.sp Scr.sp γMsp ¹ ncluded	6.2.3 [mr [mr [mr	m ²]] k ₈ <u>k₀cr n] n] n]</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 10,1 7,2 10,1 7,2 1,5h _{ef} 3,0h _{ef}	4,5	5	
Flooded hole Partial safety factor Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance Spacing Partial safety factor ¹⁾ In absence of national regulations ²⁾ The partial safety factor γ_2 =1,2 is in ³⁾ The partial safety factor γ_2 =1,4 is in	TRk γMc ¹⁾ D/37 D/50 ψc D/60 4-5 Section 4-5 Section Cor,N Scr.N Cor,sp Scr.sp γMsp ¹ ncluded	6.2.3 [mr [mr [mr	m ²]] k ₈ <u>k₀cr n] n] n]</u>	5		12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 10,1 7,2 10,1 7,2 1,5h _{ef} 3,0h _{ef}	4,5	5	
Flooded hole Partial safety factor C30 Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance Spacing Partial safety factor 1 In absence of national regulations 2 The partial safety factor γ_2 =1,2 is ii 3 The partial safety factor γ_2 =1,4 is ii igh Load Vinylester JFV3808	TRk γMc ¹⁾ D/37 D/50 ψc D/60 4-5 Section 4-5 Section Cor,N Scr.N Cor,sp yMsp ¹ ncluded SF,	[N/m [-] [-] 16.2.2 16.2.3 [mr [mr [mr	m ²] k ₈ k ₀₀ k ₀₀ n] n] n] n]	5 M8 N	110 M	12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 10,1 7,2 10,1 7,2 1,5h _{ef} 3,0h _{ef}	4,5	5	
Flooded hole Partial safety factor Factor for cracked concrete C40 C50 Factor according to CEN/TS 1992- Concrete cone failure Size Factor according to CEN/TS 1992- Edge distance Spacing Splitting failure Edge distance Spacing Partial safety factor ¹⁾ In absence of national regulations ²⁾ The partial safety factor γ_2 =1,2 is in ³⁾ The partial safety factor γ_2 =1,4 is in	TRk γMc ¹⁾ D/37 D/50 ψc D/60 4-5 Section 4-5 Section Cor,N Scr.N Cor,sp yMsp ¹ ncluded SF,	[N/m [-] [-] 16.2.2 16.2.3 [mr [mr [mr	m ²] k ₈ k ₀₀ k ₀₀ n] n] n] n]	5 M8 N	110 M	12 M ⁻	1,8 ²⁾ 5 2,1 ³⁾ 1,12 1,23 1,30 7,2 10,1 7,2 10,1 7,2 1,5h _{ef} 3,0h _{ef}	0 M24	5	/ M3

Table C5: Design method CEN/TS 1992-4

Page 17 of 22 ETA 15/0704 issued on 22/10/2015

Steel failure - Characteristic re	sistance								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270	442
Partial safety factor	γ _{Ms} 1)	[-]				1,4			
Combined pullout and concret	e cone failu	re in non-	cracke	ed con	crete C	20/25			
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance	in non-cra	cked cond	rete						
Dry and wet concrete	TRk	[N/mm ²]	12	10	10	9	9	9	5,5
Partial safety factor	γMc ¹⁾	[-]				1,82)			
Flooded hole	TRk	[N/mm ²]	12	10	10	9	9	9	5,5
Partial safety factor	γMo ¹⁾	[-]				2,13)			
Factor for concrete C50/60	Ψc	[-]				1			
Factor according to CEN/TS 1992-	4-5 Section 6	3.2.2 k ₈				10,1			
Concrete cone failure				01					
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Factor according to CEN/TS 1992-	4-5 Section 6	6.2.3 kucr				10,1	Ma		
Edge distance	Ccr,N	[mm]				1,5hef			
Spacing	Scr.N	[mm]				3,0hef			
Splitting failure									
Edge distance	Ccr,sp	[mm]				1,5hef			
Spacing	Scr,sp	[mm]				3,0hef			
Partial safety factor	γ _{Msp} ¹⁾	[-]				1,8			

Table C6: Design method CEN/TS 1992-4 Characteristic values of resistance to tension load of rebar

¹⁾ In absence of national regulations ²⁾ The partial safety factor γ_2 =1,2 is included ³⁾ The partial safety factor γ_2 =1,4 is included

High Load Vinylester JFV380SF,	
High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances	Annex C 6
Design according to CEN/TS 1992-4	
Characteristic resistance for tension loads - rebar	

Page 18 of 22 ETA 15/0704 issued on 22/10/2015

Steel failure without lever arm										
Size	_		M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs ¹⁾	[-]					67			
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γ _{Ms} ¹⁾	[-]					25			
Steel grade 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs ¹⁾	[-]	_				25			
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γ _{Ms} ¹⁾	[-]				1	,5			
Stainless steel grade A4-70	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,	56			
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	YMs ¹⁾	[-]				1,	33			
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs ¹⁾	[-]				1,	25			
Ductility factor according to						0	0			
CEN/TS 1992-4-5 Section 6.3.2.1		k2				0	,8			
Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	Mº _{Rk,s}	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs ¹⁾	[-]	10	00	52		67	440	000	500
Steel grade 5.8	M ^o Rk,s	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs ¹⁾	[-]	10	01	00		25	001	002	1120
Steel grade 8.8	M ^o Rk,s	[N.m]	30	60	105	266	519	898	1332	1700
Partial safety factor	YMs ¹⁾	[-]	- 00	00	100	and the second se	25	000	1002	1100
Steel grade 10.9	Mº _{Rk,s}	[N.m]	37	75	131	333	649	1123	1664	2240
Partial safety factor	YMs ¹⁾	[-]	57	75	101		50	1120	1004	2240
Stainless steel grade A4-70	M ^o Rk,s	[N.m]	26	52	92	233	454	786	1165	157/
Partial safety factor	γMs ¹⁾	[[4.11]	20	52	92	and the second se	56	700	1105	15/4
Stainless steel grade A4-80	M ^o Rk,s	[N.m]	30	60	105		519	898	1332	1700
Partial safety factor	γMs ¹⁾	[13.11]	30	00	105	and the second strength of the second strengt	33	090	1332	1798
		_	26	52	02	233	454	706	1165	1574
Stainless steel grade 1.4529 Partial safety factor	M ^o Rk,s γMs ¹⁾	[N.m]	20	52	92		25	786	1165	15/4
	γMs ^{*/}	[-]				1,	25			
Concrete pryout failure			<u> </u>							_
Factor according to CEN/TS 1992-4-5 Section 6.3.3		k3				2	,0			
Partial safety factor	1)	11	-			- 1	.5			
Partial safety factor	γMp ¹⁾	[-]				1	c,			
Concrete edge failure										
			M8	M10	M12	M16	M20	M24	M27	M30
Size										
See section 6.3.4 of CEN/TS 1992-4-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
See section 6.3.4 of CEN/TS 1992-4-5 Effective length of anchor	ŀ	[mm]				min(h		and the second se		
See section 6.3.4 of CEN/TS 1992-4-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	[mm] [mm]	8	10	lr = 12	16	^{lef;8} d _n 20 ,5	om) 24	27	30

 Table C7:
 Design method CEN/TS 1992-4

 Characteristic values of resistance to shear load of threaded rod

¹⁾ In absence of national regulations

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances	Annex C 7
Design according to CEN/TS 1992-4	
Characteristic resistance for shear loads - threaded rod	

Page 19 of 22 ETA 15/0704 issued on 22/10/2015

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s}	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs ¹⁾	[-]				1,5			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1		k2				0,8			
Steel failure with lever arm							s – 2		<i></i>
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	Mº _{Rk,s}	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs ¹⁾	[-]				1,5			
Concrete pryout failure									
Factor according to CEN/TS 1992-4-5 Section 6.3.3		kз				2,0			
Partial safety factor	γ _{Mp} ¹⁾	[-]				1,5			
Concrete edge failure									
Size		1	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
See section 6.3.4 of CEN/TS 1992-4-	5		_						
Effective length of anchor	lr.	[mm]		a – .	$l_f = m$	in(her;8	dnom)		
Outside diameter of anchor	dnom	[mm]	8	10	12	16	20	24	30
Partial safety factor	γMc ¹⁾	[-]				1,5			

Table C8: Design method CEN/TS 1992-4 Characteristic values of resistance to shear load of rebar

1) In absence of national regulations

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances Design according to CEN/TS 1992-4 Characteristic resistance for shear loads - rebar	Annex C 8

Table C9: Displacement of threaded rod under tension and shear load

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concret	e									
Tension load	F	[kN]	6,3	7,9	11,9	15,9	23,8	29,8	37,7	45,6
Displacement	δ _{N0}	[mm]	0,3	0,3	0,3	0,3	0,4	0,5	0,5	0,5
	$\delta_{N_{\infty}}$	[mm]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Shear load	F	[kN]	3,1	5,0	7,2	13,5	21,0	30,3	39,4	48,0
Displacement	δνο	[mm]	1,5	1,5	1,5	1,5	2,0	2,5	2,5	2,5
	δv∞	[mm]	2,3	2,3	2,3	2,3	3,0	3,8	3,8	3,8
Cracked concrete										
Tension load	F	[kN]		5,1	7,4	13,1	20,5	24,6		_
Displacement	δ _{N0}	[mm]		0,4	0,7	0,7	0,7	0,6		_

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances Displacement for threaded rod	Annex C 9

Page 21 of 22 ETA 15/0704 issued on 22/10/2015

Rebar size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Non-cracked concret	te								
Tension load	F	[kN]	7,9	9,9	13,9	23,8	29,8	55,6	55,6
Displacement	δ _{N0}	[mm]	0,3	0,3	0,3	0,4	0,4	0,5	0,5
	δ _{N∞}	[mm]	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Shear load	F	[kN]	5,9	9,3	13,3	23,7	37,0	57,9	94,8
Displacement	δνο	[mm]	0,3	0,4	0,4	0,4	0,4	0,5	0,9
	δv≈	[mm]	0,5	0,6	0,6	0,6	0,6	0,8	1,4

Table C10: Displacement of rebar under tension and shear load

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW	
Performances Displacement for rebar	Annex C 10

TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Technical and Test Institute for Construction Prague

Akreditovaná zkušební laboratoř, Autorizovaná osoba, Notifikovaná osoba, Oznámený subjekt, Subjekt pro technické posuzování, Certifikační orgán, Inspekční orgán / Accredited Testing Laboratory, Authorized Body, Notified Body, Technical Assessment Body, Certification Body, Inspection Body, Prosecká 811/76a, 190 00 Praha 9 - Prosek, Czech Republic

CERTIFICATE OF CONSTANCY OF PERFORMANCE

No. 1020 - CPR - 090-034765

In compliance with Regulation 305/2011/EU of the European Parliament and of the Council of 9 March 2011 (the Construction Products Regulation or CPR), this certificate applies to the construction product:

High Load Vinylester JFV380SF, High Load Vinylester Fast Cure / Winter Grade JFEA410SFW

Bonded injection type anchor for use in cracked and non-cracked concrete

produced by or for

JCP Owlett-Jaton Opal Way, Stone Business Park Stone, Staffordshire, ST15 0SW, United Kingdom

and produced in the manufacturing plant

JCP Owlett-Jaton JCP Plant 1 United Kingdom

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the ETA

ETA 15/0704

under system 1 for the performances set out in this certificate are applied and that

the construction product fulfils all the prescribed requirements for these performances.

This certificate was first issued on 10th November 2015 and remains valid as long as the ETA remains valid and the manufacturing conditions in the plant or the factory production control itself are not modified significantly, unless suspended or withdrawn by the product certification body.

Ing. Jozef Pôbiš Manager of the Notified Body

The stamp of the Notified Body 1020 Prague, 10th November 2015

Revision: 7

SAFETY DATA SHEET Vinylester Injection Resin PART A

1.1. Product identifier	
Product name	Vinylester Injection Resin
Product number	JFV300SF and JFV380SF and JFEA410SFW
1.2. Relevant identified use	es of the substance or mixture and uses advised against
Identified uses	Resin.
1.3. Details of the supplier	of the safety data sheet
Supplier	JCP Construction Products
ensus - succes	Unit 14 Teddington Business Park
	Station Rd Teddington TW11 9BQ
	Tel +44 208 943 1800
	Fax +44 208 943 1140
Web	www.jcpfixings.co.uk
Contact noman	
Contact person	jcpenquiries@owlett-jaton.com
1.4. Emergency telephone	
Emergency telephone	Tel +44 208 943 1800 Monday to Friday 9.00 to 5.00
SECTION 2 Hazards ident	ification
2.1. Classification of the su	bstance or mixture
Classification (EC 1272/20	08)
Physical hazards	Flam. Liq. 3 - H226
Health hazards	Eye Irrit. 2 - H319 Skin Sens. 1 - H317
Environmental hazards	Not Classified
Human health	Vapours may irritate throat/respiratory system. May irritate eyes and skin. May cause skin sensitisation or allergic reactions in sensitive individuals.
2.2. Label elements	
Pictogram	

Signal word

Hazard statements

H226 Flammable liquid and vapour. H317 May cause an allergic skin reaction. H319 Causes serious eye irritation.

Warning

€ 01234 333949 FAX- 01234 211069 ⊠ info@fasteners-ft.co.uk www.fastenersfixingsandtools.co.uk

Precautionary statements	 P261 Avoid breathing vapour/ spray. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P302+P352 IF ON SKIN: Wash with plenty of water. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P370+P378 In case of fire: Use foam, carbon dioxide, dry powder or water fog to extinguish. P501 Dispose of contents/ container in accordance with national regulations.
Contains	2-HYDROXYPROPYL METHACRYLATE, REACTION MASS OF 2,2'-[(4-METHYLPHENYL) IMINO] BISETHANOL AND ETHANOL 2-[[2-(2-HYDROXYETHOXY)ETHYL](4- METHYLPHENYL)AMINO]-
Supplementary precautionary statements	 P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P233 Keep container tightly closed. P264 Wash contaminated skin thoroughly after handling. P333+P313 If skin irritation or rash occurs: Get medical advice/ attention. P337+P313 If eye irritation persists: Get medical advice/ attention. P403+P235 Store in a well-ventilated place. Keep cool.

2.3. Other hazards

SECTION 3: Composition/information on ingredients

3.2. Mixtures

2-HYDROXYPROPYL METHACI	RYLATE		5-10%
CAS number: 923-26-2	EC number: 213-090-3		
Classification			
Eye Irrit. 2 - H319			
Skin Sens. 1 - H317			
VINYL TOLUENE		i	5-10%
CAS number: 25013-15-4	EC number: 246-562-2	REACH registration number: 01- 2119622074-50-XXXX	
Classification			
Flam. Liq. 3 - H226			
Acute Tox. 4 - H332			
Skin Irrit. 2 - H315			
Eye Irrit. 2 - H319			
Asp. Tox. 1 - H304			

<0.5%

Vinylester Injection Resin

REACTION MASS OF 2,2'-[(4-METHYLPHENYL) IMINO] BISETHANOL AND ETHANOL 2-[[2-(2-HYDROXYETHOXY)ETHYL](4-METHYLPHENYL)AMINO]-

CAS number: 103671-44-9

EC number: 911-490-9

REACH registration number: 01-2119979579-10-XXXX

Classification

Acute Tox. 4 - H302 Skin Irrit. 2 - H315 Eye Dam. 1 - H318 Skin Sens. 1 - H317 Aquatic Chronic 3 - H412

The Full Text for all R-Phrases and Hazard Statements are Displayed in Section 16.

SECTION 4: First aid measure	95			
4.1. Description of first aid me	asures			
Inhalation	Move affected person to fresh air at once. Get medical attention if any discomfort continues.			
Ingestion	Never give anything by mouth to an unconscious person. Do not induce vomiting. Rinse mouth thoroughly with water. Get medical attention if any discomfort continues.			
Skin contact	Remove affected person from source of contamination. Remove contaminated clothing. Wash skin thoroughly with soap and water. Get medical attention if any discomfort continues.			
Eye contact	Rinse immediately with plenty of water. Remove any contact lenses and open eyelids wide apart. Continue to rinse for at least 15 minutes. Get medical attention if irritation persists after washing. Show this Safety Data Sheet to the medical personnel.			
4.2. Most important symptoms	and effects, both acute and delayed			
Inhalation	Irritation of nose, throat and airway.			
Ingestion	May cause discomfort if swallowed.			
Skin contact	May cause skin irritation/eczema.			
Eye contact	Irritation of eyes and mucous membranes.			
4.3. Indication of any immedia	te medical attention and special treatment needed			
Notes for the doctor	No specific recommendations. If in doubt, get medical attention promptly.			
SECTION 5: Firefighting meas	sures			
5.1. Extinguishing media				
Suitable extinguishing media	Extinguish with foam, carbon dioxide or dry powder.			
5.2. Special hazards arising fr	om the substance or mixture			
Specific hazards	No unusual fire or explosion hazards noted.			
Hazardous combustion products	Oxides of carbon.			
5.3. Advice for firefighters				
Protective actions during firefighting	Avoid breathing fire gases or vapours.			

Vinylester Injection Resin

Special protective equipment for firefighters	Wear positive-pressure self-contained breathing apparatus (SCBA) and appropriate protective clothing.					
SECTION 6 Accidental releas	e measures					
6.1. Personal precautions, pro	tective equipment and emergency procedures					
Personal precautions	Wear protective clothing as described in Section 8 of this safety data sheet.					
6.2. Environmental precaution	5					
Environmental precautions	Avoid release to the environment.					
6.3. Methods and material for	containment and cleaning up					
Methods for cleaning up	Collect and place in suitable waste disposal containers and seal securely. For waste disposa see Section 13.					
6.4. Reference to other section	15					
Reference to other sections	Wear protective clothing as described in Section 8 of this safety data sheet. For waste disposal, see Section 13.					
SECTION 7. Handling and sto	rage					
7.1. Precautions for safe hand	ling					
Usage precautions	Do not use in confined spaces without adequate ventilation and/or respirator.					
7.2. Conditions for safe storag	e, including any incompatibilities					
Storage precautions	Store in tightly closed original container in a dry, cool and well-ventilated place. Keep away from oxidising materials, heat and flames.					
Storage class	Chemical storage.					
7.3. Specific end use(s)						
Specific end use(s)	The identified uses for this product are detailed in Section 1.2.					
SECTION 8: Exposure Contro	is/personal protection					
8.1. Control parameters						
	VINYL TOLUENE (CAS: 25013-15-4)					
DNEL	Industry - Inhalation; Long term systemic effects: 37 mg/m ³ Industry - Inhalation; Long term local effects: 37 mg/m ³ REACH dossier information					
PNEC	 Fresh water; 0.0498 mg/l Marine water; 0.002 mg/l Intermittent release; 0.013 mg/l STP; 1 mg/l Sediment (Freshwater); 0.684 mg/kg Sediment (Marinewater); 0.0684 mg/kg Soil; 0.133 mg/kg REACH dossier information 					
	YDROXYETHOXY)ETHYL](4-METHYLPHENYL)AMINO]- (CAS: 103671-44-9)					

Inhalation; Long term : 9.8 mg/m³
 Workers - Dermal; Long term : 1.4 mg/kg

PNEC

- Fresh water; 0.048 mg/l
 - Marine water; 0.0048 mg/l
 - Intermittent release; 0.48 mg/l
 - Sediment (Freshwater); 1.2 mg/kg
 - Sediment (Marinewater); 0.12 mg/kg
 - Soil; 0.21 mg/kg

8.2. Exposure controls

Protective equipment

Appropriate engineering controls	Provide adequate ventilation. Avoid inhalation of vapours. Observe any occupational exposure limits for the product or ingredients.
Eye/face protection	The following protection should be worn: Chemical splash goggles.
Hand protection	It is recommended that chemical-resistant, impervious gloves are worn.
Other skin and body protection	Wear appropriate clothing to prevent any possibility of skin contact.
Hygiene measures	DO NOT SMOKE IN WORK AREA! Wash hands at the end of each work shift and before eating, smoking and using the toilet. Wash promptly if skin becomes contaminated. Promptly remove any clothing that becomes contaminated. Use appropriate skin cream to prevent drying of skin. When using do not eat, drink or smoke.
Respiratory protection	No specific recommendations. Respiratory protection may be required if excessive airborne contamination occurs.
Environmental exposure controls	Keep container tightly sealed when not in use.

SECTION 9: Physical and Chemical Properties

9.1. Information on basic physical and chemical properties

Appearance	Liquid
Colour	Beige.
Odour	Aromatic.
Odour threshold	Not determined.
рH	Not applicable.
Melting point	Not determined.
Initial boiling point and range	>165°C @
Flash point	53°C
Evaporation rate	Not determined.
Evaporation factor	Not determined.
Flammability (solid, gas)	Not determined.
Upper/lower flammability or explosive limits	Not determined.
Other flammability	Not determined.

Vapour pressure	6 hPa @ 20°C
Vapour density	Not determined.
Relative density	1.65 - 1.75 @ 20°C
Bulk density	Not applicable.
Solubility(ies)	Insoluble in water
Partition coefficient	Not determined.
Auto-ignition temperature	Not determined.
Decomposition Temperature	Not determined.
Viscosity	> 60 S ISO2431
Explosive properties	No information available.
Oxidising properties	Does not meet the criteria for classification as oxidising.
9.2. Other information	
SECTION 10: Stability and rea	ctivity
10.1. Reactivity	
Reactivity	The following materials may react with the product: Organic peroxides/hydroperoxides.
10.2. Chemical stability	
Stability	Stable at normal ambient temperatures.
10.3. Possibility of hazardous r	reactions
Possibility of hazardous reactions	Does not decompose when used and stored as recommended.
10.4. Conditions to avoid	
Conditions to avoid	Avoid excessive heat for prolonged periods of time.
10.5. Incompatible materials	
Materials to avoid	Organic peroxides/hydroperoxides.
10.6. Hazardous decomposition	n products
Hazardous decomposition products	Oxides of carbon.
SECTION 11 Toxicological info	ormation
11.1. Information on toxicologic	cal effects
Acute toxicity - inhalation	
ATE inhalation (vapours mg/l)	159.27
Skin sensitisation	
Skin sensitisation	Sensitising.
Inhalation	Gas or vapour in high concentrations may irritate the respiratory system. Symptoms following overexposure may include the following: Coughing.
Inhalation	Gas or vapour in high concentrations may irritate the respiratory system. Symptoms following overexposure may include the following: Coughing. May cause discomfort if swallowed.

Eye contact	Irritating to eyes.
Acute and chronic health	Irritating to eyes. May cause sensitisation by skin contact.
hazards	intalling to eyes. May cause sensitisation by skin contact.
Route of entry	Skin and/or eye contact.
Medical symptoms	Irritation of eyes and mucous membranes. Irritation of nose, throat and airway. Skin irritation.
Medical considerations	Skin disorders and allergies.
Toxicological information on	n ingredients.
	2-HYDROXYPROPYL METHACRYLATE
Acute toxicity -	- oral
Acute toxicity o mg/kg)	oral (LD ₅₀ 5,000.0
Species	Rat
	VINYL TOLUENE
Acute toxicity -	- inhalation
ATE inhalation mg/l)	(vapours 11.0
Carcinogenicity	y
IARC carcinog	penicity IARC Group 3 Not classifiable as to its carcinogenicity to humans.
SECTION 12: Ecological Inf	formation
Ecotoxicity	Not regarded as dangerous for the environment.
12.1. Toxicity	
Ecological information on in	gredients.
	VINYL TOLUENE
Acute toxicity -	- fish LC50, 96 hours: 23.4 mg/l, Pimephales promelas (Fat-head Minnow)
12.2. Persistence and degra	adability
12.3. Bioaccumulative poter	ntial
Bioaccumulative potential	No data available on bioaccumulation.
Partition coefficient	Not determined.
Ecological information on in	gredients.
	VINYL TOLUENE
Partition coefficient	icient log Pow: 3.36
12.4. Mobility in soil	9298 ⁷
Mobility	Not applicable.

Mobility Not applicable.

12.5. Results of PBT and vPvB assessment

Results of PBT and vPvB This product does not contain any substances classified as PBT or vPvB. assessment

12.6. Other adverse effects	
Other adverse effects	Not applicable.
SECTION 13: Disposal consid	erations
13.1. Waste treatment method	<u>is</u>
General information	Dispose of waste product or used containers in accordance with local regulations
Disposal methods	Dispose of waste via a licensed waste disposal contractor.
SECTION 14: Transport inform	nation
Road transport notes	Not regulated.
Rail transport notes	Not regulated.
14.1. UN number	
UN No. (IMDG)	1866
UN No. (ICAO)	1866
14.2. UN proper shipping name	<u>e</u>
Proper shipping name (IMDG)	RESIN SOLUTION
Proper shipping name (ICAO)	RESIN SOLUTION
14.3. Transport hazard class(e	<u>es)</u>
IMDG class	3
ICAO class/division	3
Transport labels	
14.4. Packing group	
IMDG packing group	
ICAO packing group	
14.5. Environmental hazards	
Environmentally hazardous su No.	bstance/marine pollutant
14.6. Special precautions for u	iser
EmS	F-E, S-E
14.7. Transport in bulk accordi	ing to Annex II of MARPOL and the IBC Code
Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code	Not relevant.
SECTION 15: Regulatory infor	mation
15.1. Safety, health and enviro	onmental regulations/legislation specific for the substance or mixture
EU legislation	(EU) No 2015/830

Guidance

Workplace Exposure Limits EH40.

15.2. Chemical safety assessment

No chemical safety assessment has been carried out.

Inventories

US - TSCA

All the ingredients are listed or exempt.

US - TSCA 12(b) Export Notification

None of the ingredients are listed or exempt.

SECTION 16: Other information

Revision comments	NOTE: Lines within the margin indicate significant changes from the previous revision.
Revision date	26/05/2016
Revision	7
Supersedes date	08/03/2016
SDS number	20343
Hazard statements in full	H226 Flammable liquid and vapour.
	H302 Harmful if swallowed.
	H304 May be fatal if swallowed and enters airways.
	H315 Causes skin irritation.
	H317 May cause an allergic skin reaction.
	H318 Causes serious eye damage.
	H319 Causes serious eye irritation.
	H332 Harmful if inhaled.
	H412 Harmful to aquatic life with long lasting effects.

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is, to the best of the company's knowledge and belief, accurate and reliable as of the date indicated. However, no warranty guarantee or representation is made to its accuracy, reliability or completeness. It is the user's responsibility to satisfy himself as to the suitability of such information for his own particular use.

SAFETY DATA SHEET Vinylester Injection Resin PART B

1.1. Product identifier	
Product name	Vinylester Injection Resin
Product number	JFV300SF and JFV380SF and JFEA410SFW
1.2. Relevant identified use	s of the substance or mixture and uses advised against Identified uses
Catalyst.	
1.3. Details of the supplier	of the safety data sheet
Supplier	JCP Construction Products
ouppilot	Unit 14 Teddington Business Park
	Station Rd Teddington TW11 9BQ
	Tel +44 208 943 1800
	Fax +44 208 943 1140
Web	www.jcpfixings.co.uk
Contact person	jcpenquiries@owlett-jaton.com
1.4. Emergency telephone	number
Emergency telephone	Tel +44 208 943 1800 Monday to Friday 9.00 to 5.00
SECTION 2: Hazards ident	ification
2.1. Classification of the su	bstance or mixture
Classification (EC 1272/200	08)
Physical hazards	Not Classified
Health hazards	Eye Irrit. 2 - H319 Skin Sens. 1 - H317
Environmental hazards	Aquatic Acute 1 - H400 Aquatic Chronic 3 - H412
Human health	May cause skin disorders if contact is repeated or prolonged. The product is irritating to eye and skin.
Environmental	The product contains a substance which is very toxic to aquatic organisms and which may cause long-term adverse effects in the aquatic environment.
Physicochemical	Not considered to be a significant hazard due to the small quantities used.
2.2. Label elements	
Pictogram	

Signal word	Warning		
Hazard statements	H317 May cause an allergic skin reaction.		
	H319 Causes serious eye irritation.		
	H400 Very toxic to aquatic life.		
	H412 Harmful to aquatic life with long lastin	ng effects.	
Precautionary statements	P273 Avoid release to the environment.		
	P280 Wear protective gloves/ protective clo	othing/ eye protection/ face protection.	
	P302+P352 IF ON SKIN: Wash with plenty of water.		
	P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
	P333+P313 If skin irritation or rash occurs:		
	P501 Dispose of contents/ container in accordance with national regulations.		
Contains	BENZOYL PEROXIDE		
Supplementary precautionary	P264 Wash contaminated skin thoroughly a	after handling.	
statements	P337+P313 If eye irritation persists: Get m	edical advice/ attention.	
	P362+P364 Take off contaminated clothing	g and wash it before reuse.	
	P391 Collect spillage.		
	P411 Store at temperatures not exceeding	25°C/77°F.	
2.3. Other hazards			
SECTION 3: Composition/infor	mation on ingredients		
3.2. Mixtures			
BENZOYL PEROXIDE		10-15%	
CAS number: 94-36-0	EC number: 202-327-6	REACH registration number: 01-	
		2119511472-50-XXXX	
M factor (Acuto) = 10			
M factor (Acute) = 10			

Classification	C	lass	ifica	tion	
----------------	---	------	-------	------	--

Org. Perox. B - H241 Eye Irrit. 2 - H319 Skin Sens. 1 - H317 Aquatic Acute 1 - H400

BENZOIC ACID, NONYL ESTER,	BRANCHED AND LINEAR	5-1
CAS number: 670241-72-2	EC number: 447-010-5	REACH registration number: 01- 0000018876-55-XXXX
Classification		
Aquatic Chronic 2 - H411		
The Full Text for all R-Phrases and	Hazard Statements are Displayed in Se	ection 16.
SECTION 4: First aid measures		

Inhalation	Move affected person to fresh air at once. Get medical attention if any discomfort continues.
Ingestion	Never give anything by mouth to an unconscious person. Do not induce vomiting. Rinse
	mouth thoroughly with water. Get medical attention if any discomfort continues.

Skin contact	Remove affected person from source of contamination. Remove contaminated clothing. Wash skin thoroughly with soap and water. Get medical attention if any discomfort continues.
Eye contact	Rinse immediately with plenty of water. Remove any contact lenses and open eyelids wide apart. Continue to rinse for at least 15 minutes. Get medical attention if irritation persists after washing. Show this Safety Data Sheet to the medical personnel.
4.2. Most important symptoms	and effects, both acute and delayed
Ingestion	May cause discomfort if swallowed.
Skin contact	Causes skin irritation.
Eye contact	Irritation of eyes and mucous membranes.
4.3. Indication of any immediat	e medical attention and special treatment needed
Notes for the doctor	No specific recommendations. If in doubt, get medical attention promptly.
SECTION 5: Firefighting meas	ures
5.1. Extinguishing media	
Suitable extinguishing media	Extinguish with foam, carbon dioxide or dry powder.
5.2. Special hazards arising fro	om the substance or mixture
Specific hazards	No specific precautions due to the small quantities handled.
Hazardous combustion products	Oxides of carbon.
5.3. Advice for firefighters	
Protective actions during firefighting	Avoid breathing fire gases or vapours.
Special protective equipment for firefighters	Wear positive-pressure self-contained breathing apparatus (SCBA) and appropriate protective clothing.
SECTION 6: Accidental releas	e measures
6.1. Personal precautions, pro	tective equipment and emergency procedures
Personal precautions	Wear protective clothing as described in Section 8 of this safety data sheet.
6.2. Environmental precaution	S
Environmental precautions	Avoid release to the environment.
6.3. Methods and material for	containment and cleaning up
Methods for cleaning up	Collect and place in suitable waste disposal containers and seal securely. For waste disposal, see Section 13.
6.4. Reference to other section	IS
Reference to other sections	Wear protective clothing as described in Section 8 of this safety data sheet. For waste disposal, see Section 13.
SECTION 7: Handling and sto	rage
7.1. Precautions for safe hand	ling

Usage precautions

Keep away from heat, sparks and open flame.

Advice on general occupational hygiene	Do not eat, drink or smoke when using this product. No specific hygiene procedures recommended but good personal hygiene practices should always be observed when working with chemical products.
7.2. Conditions for safe stor	rage, including any incompatibilities
Storage precautions	Keep away from flammable and combustible materials. Store in closed original container at temperatures between 5°C and 25°C.
Storage class	Chemical storage.
7.3. Specific end use(s)	
Specific end use(s)	The identified uses for this product are detailed in Section 1.2.

8.1. Control parameters
Occupational exposure limits
BENZOYL PEROXIDE

Long-term exposure limit (8-hour TWA): WEL 5 mg/m³ WEL = Workplace Exposure Limit

BENZOYL PEROXIDE (CAS: 94-36-0)

DNEL	Industry - Dermal; Long term : 6.6 mg/kg/day
	Industry - Oral; Long term : 1.6 mg/kg/day
	Industry - Inhalation; Long term : 11.75 mg/m ³
PNEC	- Fresh water; 0.000602 mg/l
	- Sediment (Freshwater); 0.338 mg/kg
	- STP; 0.35 mg/l
	- Marine water; 0.0000602 mg/l
	- Sediment (Marinewater); 0.0338 mg/kg

8.2. Exposure controls

Protective equipment

Appropriate engineering controls	Provide adequate ventilation.
Eye/face protection	The following protection should be worn: Chemical splash goggles.
Hand protection	Wear protective gloves made of the following material: Nitrile rubber.
Other skin and body protection	Wear appropriate clothing to prevent any possibility of skin contact.
Hygiene measures	Wash hands at the end of each work shift and before eating, smoking and using the toilet. DO NOT SMOKE IN WORK AREA!
Respiratory protection	No specific recommendations.

SECTION 9: Physical and Chemical Properties

9.1. Information on basic physical and chemical properties

Appearance

Liquid
Colour	Black.
Odour	Characteristic.
Odour threshold	Not determined.
pН	Not determined.
Melting point	Not applicable.
Initial boiling point and range	Not applicable.
Flash point	Not applicable.
Evaporation rate	Not determined.
Evaporation factor	Not determined.
Flammability (solid, gas)	Not determined.
Upper/lower flammability or explosive limits	Not determined.
Other flammability	Not determined.
Vapour pressure	Not determined.
Vapour density	Not determined.
Relative density	1.5 - 1.6
Bulk density	Not applicable.
Solubility(ies)	Not determined.
Partition coefficient	Not determined.
Auto-ignition temperature	Not determined.
Decomposition Temperature	>50°C
Viscosity	> 60 S ISO2431
Explosive properties	No information available.
Oxidising properties	Not determined.
9.2. Other information	
SECTION 10: Stability and rea	activity
10.1. Reactivity	
Reactivity	The following materials may react with the product: Acids, Alkalis, Amines, Strong reducing agents.
10.2. Chemical stability	
Stability	Stable at normal ambient temperatures and when used as recommended. Will decompose at temperatures exceeding 50°C.
10.3. Possibility of hazardous	reactions
Possibility of hazardous reactions	Will not polymerise.
10.4. Conditions to avoid	
Conditions to avoid	Avoid contact with strong reducing agents. Avoid heat. Avoid contact with acids and alkalis.

10.5. Incompatible materials

Materials to avoid

Strong reducing agents. Acids, non-oxidising. Acids - organic. Alkalis - inorganic. Alkalis - organic. Amines.

10.6. Hazardous decomposition products

Hazardous decomposition Oxides of carbon. products

SECTION 11: Toxicological information

11.1. Information on toxicol	ogical effects
Skin sensitisation	
Skin sensitisation	Sensitising.
Inhalation	No specific health hazards known.
Ingestion	May cause discomfort if swallowed.
Skin contact	Irritating to skin. May cause sensitisation by skin contact.
Eye contact	Irritation of eyes and mucous membranes.
Route of entry	Skin and/or eye contact.
Medical symptoms	Skin irritation. Irritation of eyes and mucous membranes.
Medical considerations	No information available.

Toxicological information on ingredients.

BENZOYL PEROXIDE

Acute toxicity - oral		
Acute toxicity oral (LD∞ mg/kg)	950.0	
Species	Rat	
Carcinogenicity		
IARC carcinogenicity	IARC Group 3	Not classifiable as to its carcinogenicity to humans.

SECTION 12: Ecological Information

12.1. Toxicity

Ecological information on ingredients.

BENZOYL PEROXIDE

Acute aquatic toxicity	
LE(C)50	$0.01 \le L(E)C50 \le 0.1$
M factor (Acute)	10
Acute toxicity - fish	LC50, 96 hours: 0.06 mg/l, Onchorhynchus mykiss (Rainbow trout)
Acute toxicity - aquatic invertebrates	EC ₅₀ , 48 hours: 0.11 mg/l, Daphnia magna
Acute toxicity - aquatic plants	ECso, 72 hours: 0.07 mg/l, Selenastrum capricornutum

Vinylester Injection Resin

BENZOIC ACID, NONYL ESTER, BRANCHED AND LINEAR

Acute toxicity - aquatic EC ₅₀ , 24 hours: > 2.2 mg/l, Daphnia magna invertebrates EC ₅₀ , 48 hours: > 2.2 mg/l, Daphnia magna NOEC, 48 hours: > 2.2 mg/l, Daphnia magna						
HOLO, HO HOURS, Y ELE HIGH, Daphinia magna						
Acute toxicity -IC so, 3 hours: > 1000 mg/l, Activated sludgemicroorganismsNOEC, 3 hours: > 1000 mg/l, Activated sludge	IC∞, 3 hours: > 1000 mg/l, Activated sludge					
12.2. Persistence and degradability						
Persistence and degradability There are no data on the degradability of this product.						
12.3. Bioaccumulative potential						
Bioaccumulative potential No data available on bioaccumulation.						
Partition coefficient Not determined.						
12.4. Mobility in soil						
Mobility Mobile. The product is partly miscible with water and may spread in the aquatic	environment.					
12.5. Results of PBT and vPvB assessment						
Results of PBT and vPvB This product does not contain any substances classified as PBT or vPvB. assessment						
12.6. Other adverse effects						
SECTION 13: Disposal considerations						
13.1. Waste treatment methods						
General information Dispose of waste product or used containers in accordance with local regulation	าร					
Disposal methods Dispose of waste via a licensed waste disposal contractor.						
SECTION 14: Transport information						
14.1. UN number						
UN No. (ADR/RID) 3082						
UN No. (IMDG) 3082						
UN No. (IMDG) 3082 UN No. (ICAO) 3082						
UN No. (ICAO) 3082						
UN No. (ICAO) 3082 UN No. (ADN) 3082	. PEROXIDE					
UN No. (ICAO) 3082 UN No. (ADN) 3082 14.2. UN proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. BENZOYL						

Proper shipping name (ADN) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. BENZOYL PEROXIDE

14.3. Transport hazard class(es)

9
M6
9
9
9
9

Transport labels

14.4. Packing group	
ADR/RID packing group	ш
IMDG packing group	Ш
ADN packing group	ш
ICAO packing group	Ш

14.5. Environmental hazards

Environmentally hazardous substance/marine pollutant

3

14.6. Special precautions for user

EmS	F-A, S-F
-----	----------

ADR transport category

Emergency Action Code •3Z

Hazard Identification Number 90 (ADR/RID)

Tunnel restriction code (E)

14.7. Transport in bulk according to Annex II of MARPOL and the IBC Code

Transport in bulk according to Not applicable. Annex II of MARPOL 73/78 and the IBC Code

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EU legislation (EU) No 2015/830

Guidance Workplace Exposure Limits EH40.

15.2. Chemical safety assessment

No chemical safety assessment has been carried out.

Inventories

US - TSCA All the ingredients are listed or exempt.

US - TSCA 12(b) Export Notification

None of the ingredients are listed or exempt.

SECTION 16: Other informa	tion
Revision comments	NOTE: Lines within the margin indicate significant changes from the previous revision.
Revision date	06/03/2017
Revision	7
Supersedes date	26/05/2016
SDS number	20483
Hazard statements in full	 H241 Heating may cause a fire or explosion. H317 May cause an allergic skin reaction. H319 Causes serious eye irritation. H400 Very toxic to aquatic life. H411 Toxic to aquatic life with long lasting effects. H412 Harmful to aquatic life with long lasting effects.

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is, to the best of the company's knowledge and belief, accurate and reliable as of the date indicated. However, no warranty guarantee or representation is made to its accuracy, reliability or completeness. It is the user's responsibility to satisfy himself as to the suitability of such information for his own particular use.

Declaration of Performance No. 1488-CPD-0359/W

Injection Resin JFV380SF, JFV300SF & JFEA410SFW Vinylester Resin JCP Construction Products, Unit 14 Teddington Business Park, Station Rd, Teddington, Middlesex TW11 9BQ Telephone +44 (0)208 943 1800

Intended	use or uses of the products according	to EAD 330499-00-0601										
Generic ty					Bonded Anchor							
Base mat				Cracked and Non-cracked concrete C20/25 to C50/60 acc. EN 206-2:2003 The anchor may be installed in dry, wet, and flooded, holes.								
				Marked on	individual tul	pes						
Plating fin	nish				plated ≥ 5 μ							
Charlela				Steel, Hot-o	dip galvanize	d ≥ 40 μm a	acc. to EN IS	SO 1461 and	EN ISO 10	584		
2				 Galvanised carbon steel Grade 5.8, 8.8 and 10.9 to EN ISO 891-1 Stainless Steel 1.4401, 1.4404 or 1.457 Property class 70 or 80 to EN ISO 3506 High corrosion resistant steel 1.4529, EN 10088-1 								
				 Dry Internal conditions Internal and external atmospheric exposure including industrial and marine environment, or exposure in permenantly damp internal conditions, if no particularly aggressive conditions exist Aggressive atmospheric conditions 								
Loading				Static, quas	si-static							
ETA ASC	704 Second Box			200								
and a second				ZUS	0004							
		E insured has		330499-00-	-0601							
	e of Conformity 1020-CPR-090-03476	5 issued by		ZUS								
Under sys	0.00											
Temperature range(s)				-40°C to +80°C (Max short term temperature +80°C and Max long term temperature +50°C)								
Reaction	to fire			Anchorage satisfies requirements for Class A1								
		haracteristics		M08	M10	M12	Performano M16	e M20	M24	M30		
	Nominal diameter of drill bit		[fermal	10	40	44	18	1 22	26	25		
d,			[mm]	10	12	14	18	22	20	35 35		
d _f	Fixture clearance hole Bruah diameter		[mm]	10	12	20	20	22	20	40		
d _b	Effective anchorage depth		[mm] (mm]	14	14		= 8d, h _{efmax}	2.01	29	40		
h _{ef}	Minimum thickness of concrete n	aamhar	[mm]	2	h., + 30mm,			- 200	h _{ef} + 2*d _o			
h _{min} T _{inst}	Nominal torque moment	lenibel	[mm]	10	20	40	80	150	200	275		
-	Minimum spacing		[mm]	35	40	50	65	80	96	120		
S _{min} C _{min}	Minimum edged distance	Minimum Embedment	[mm]	35	40	50	65	80	96	120		
Smin	Minimum spacing	114 Marte costo a ve	[mm]	80	100	120	160	200	240	300		
a sub-	Minimum edged distance	Maximum Embedment	[mm]	80	100	120	160	200	240	300		
0	minimum euged distance		finuil	00	100	120	100	200	240	500		
C _{min} Tensile St	teel failure			12	20 I		S	2	-	0.04		
Tensile S	teel failure Characteristic tensile resistance :	steel Grade 5.8	[kN]	18	29	42	79	123	177	281		
Tensile S NRk,s			[kN] [kN]	18 29	29 46	42 67	79 126	123 196	177 282	281 449		
Tensile S NRk,s	Characteristic tensile resistance Characteristic tensile resistance		[kN] [kN]	18 29			126	123 196	177 282			
Tensile S NRk,s NRk,s γM,s	Characteristic tensile resistance	steel Grade 8.8	[kN]	29	46	67	126 1.5	196	282			
Tensile S NRk,s NRk,s	Characteristic tensile resistance s Characteristic tensile resistance s Partial safety factor Characteristic tensile resistance s	steel Grade 8.8					126 1.5 110			449		
Tensile S NRk,s NRk,s γM,s NRk,s γM,s	Characteristic tensile resistance Characteristic tensile resistance Partial safety factor	steel Grade 8.8 stainless steel Grade A4-70	[kN]	29 26	46 41	67	126 1.5 110 1.9	196 172	282 247	449		
Tensile Si NRk,s NRk,s γM,s NRk,s	Characteristic tensile resistance s Characteristic tensile resistance s Partial safety factor Characteristic tensile resistance s Partial safety factor Characteristic tensile resistance s	steel Grade 8.8 stainless steel Grade A4-70	[kN]	29	46	67 59	126 1.5 110 1.9 126	196	282	449 393		
Tensile S NRk,s NRk,s γM,s NRk,s γM,s NRk,s	Characteristic tensile resistance s Characteristic tensile resistance s Partial safety factor Characteristic tensile resistance s Partial safety factor	steel Grade 8.8 stainless steel Grade A4-70 stainless steel Grade A4-80	[kN]	29 26	46 41	67 59	126 1.5 110 1.9	196 172	282 247	449 393		

€ 01234 333949 FAX- 01234 211069 ⊠ info@fasteners-ft.co.uk www.fastenersfixingsandtools.co.uk

Essential Characteristics				Performance						
	Essenual Unaracterisucs	M08	M10	M12	M16	M20	M24	M30		
Combined p	ull-out and concrete cone failure in non-cracked concrete									
	Characteristic bond resistance in non-cracked concrete C20/25									
Rk,ucr	Dry and wet concrete	[N/mm ²]	11	10	9.5	9.0	8.5	8.0	5.5	
M,p	Partial safety factor	[·]			47	1.8			2.1	
Rk,ucr	Flooded concrete	[N/mm ²]	9.0	8.0	7.5	7.0	7.0	6.0		
M,p	Partial safety factor	[-]			8	2.1				
PcC50/60	Factor for concrete C50/60	[·]				1.0				
Combined p	ull-out and concrete cone failure in cracked concrete	1/4 T	ar.							
92.4	Characteristic bond resistance in cracked concrete C20/25		1	·	S.		a		0.5	
Rk,cr	Dry and wet concrete	[N/mm*]		5.0	5.0	5.0	4.5	4.5		
/M,p	Partial safety factor	[-]				1.8				
:Rk,cr	Flooded concrete	[N/mm ²]	/	5.0	5.0	5.0	4.5	4.5		
M,p	Partial safety factor	[•]	/			2.1				
	Factor for Cracked conrete			2						
PcC30/37	Increasing factor for concrete C30/37	[•]	/			1.12			/	
ΨcC40/50	Increasing factor for concrete C40/50	[·]	/			1.23			/	
PcC50/60	Increasing factor for concrete C50/60	[-]	/			1.30				
Splitting failu	ure	_	_							
or.sp	Critical spacing (Splitting)	[mm]				3.0h _{ef}				
Cor,sp	Critical edge distance (Splitting)	[mm]				1.5h _{ef}				
M,p	Partial safety factor	[·]				1.8				
Shear steel t	failure without bending arm			·. · ·			0			
/ _{-Rks}	Characteristic shear steel failure Grade 5.8	[kN]	9	15	21	39	61	88	140	
/ _{.Rks}	Characteristic shear steel failure Grade 8.8	[kN]	15	23	34	63	98	141	224	
/m,sV	Partial safety factor	[·]	Ĩ			1.25				
/ Rk,s	Characteristic shear stainless steel failure Grade A4-70	[kN]	13	20	30	55	86	124	196	
/m,sV	Partial safety factor	[·]				1.56				
	Characteristic shear stainless steel failure Grade A4-80	[kN]	15	23	34	63	98	141	224	
/m,sV	Partial safety factor	[-]				1.33				
/. _{8ks}	Characteristic shear stainless steel failure 1.4529	[kN]	13	20	30	55	86	124	196	
/m,sV	Partial safety factor	[·]	- -			1.25				
	failure with bending arm									
M ⁰ Rka	Characteristic bending moment Grade 5.8	[Nm]	19	37	66	166	325	561	1125	
1° _{Rka}	Characteristic bending moment Grade 8.8	[Nm]	30	60	105	266	519	898	1799	
/m,sV	Partial safety factor	[-]	ļ,		-	1.25		-	2.7	
N° RK.s	Characteristic bending moment Grade A4-70	[Nm]	26	52	92	233	454	786	1574	
/m,sV	Partial safety factor	[·]	-			1.56				
M ⁰ Rka	Characteristic bending moment Grade A4-80	[Nm]	30	60	105	266	519	898	1799	
/m,sV	Partial safety factor	[-]				1.33			10 a.	
M ⁰ Rk.s	Characteristic bending moment 1.4529	[Nm]	26	52	92	233	454	786	1574	
m,sV	Partial safety factor	[-]				1.25			-	
Concrete pry			e.			1. D. 1977				
(Factor in EAD 330499-00-0601, Para. 2.2.8, Table 2.6	[·]				2.0				
M,c	Partial safety factor	[·]				1.5				
	rete edge failure	1.11				1.0				
and a contra	Effective anchorage length	[mm]			Effective	Embedment	Depth (h.)			
•/ /M,c	Partial safety factor	[.]			FUCCINC	1.5	Pohn (10)			

	Economical Observationistics		Performance							
	Essential Characteristics		M08	M10	M12	M16	M20	M24	M30	
Displace	ment under Tensile and Shear loading									
Non_cra	cked concrete								e	
F	Tensile load	[kN]	6.3	7.9	11.9	15.9	23.8	29.8	45.6	
δN0	Short term displacement under tensile loads	[mm]	0.3	0.3	0.3	0.3	0.4	0.5	0.5	
δN∞	Long term displacement under tensile loads	[mm]	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
F	Shear Load	[kN]	3.1	5.0	7.2	13.5	21.0	30.3	48.0	
δV0	Short term displacement under Shear loads	[mm]	1.5	1.5	1.5	1.5	2.0	2.5	2.5	
δV∞	Long term displacement under Sheare loads	[mm]	2.3	2.3	2.3	2.3	3.0	3.8	3.8	
Cracked	concrete				a. – 2					
F	Tensile load in concrete	[kN]	/	5.1	7.4	13.1	20.5	24.6		
8N0	Short term displacement under shear load	[mm]	/	0.4	0.7	0.7	0.7	0.6		

Amendments	Date
Change of ETA Number	
Cracked concrete added	
Change of issuing body	04/01/2016
M8, M20, M24 and M30 included	1
Flooded holes included	
ETAG changed to EAD	19/12/2017
Platting added	
HCR added	06/09/2018
Reaction to fire added	00/03/2010
Minimum Spacing and Edge ammended	1

The performances of the product identified by the above product codes are in conformity with the declared performance

This Declaration of performance is issued under the sole responsibility of JCP Construction Products

Signed for and on behalf of the manufacturers

Name and function	Place and date of issue	Signature
Brian Deluce	Teddington	REAL
Technical Manager	06/09/2018	V. t. Valance

Vinylester Resin

INFORMATION

Vinylester Resin is a two part gray resin (10:1) suitable for use in the vast majority of base materials. It can be used for installing threaded studs, rebar or internal threaded sockets for structural applications such as:

- Columns
- Guard rails
- Façades
- Staircases
- Silo installation
- Machines
- Cantilever beams

BASE MATERIAL

- Concrete C20/25 To C50/60
- Cracked/Non-Cracked Concrete
- Dry/Wet/Flooded Holes
- Solid Brickwork
- Concrete Block
- Natural Stone

FEATURES

- Expansion Free
- High Performance
- Close Spacing And Edge
- Distance
- Can be used in Contact with Potable (Drinking) Water

APPROVALS

European Technical Approval Option 1 Cracked Concrete

WRAS Listing Number 1604527

RELATED PRODUCTS

Injection Resin Gun

Hole Cleaning Brushes and Pump

Injection Accessories

WORKING/LOADING TIME

EMBEDDED THREADED ROD

Note:

T_{work} = The highest temperature in the range

T_{load} = The lowest temperature in the range

Temperature °C	Usable Time T _{mot} (mins)	Load Time T _{lood} (mins)
+5°C to +10°C	10	145
+10°C to +15°C	8	85
+15°C to +20°C	6	75
+20°C to +25°C	5	50
+25°C to +30°C	4	40

- High Tensile Grade 8.8 Chisel End Studs
- Zinc plated & yellow passivated min. 5µm
- Setting Tool Included
- Stainless Steel Grade A4/316
- Chisel End Studs
- Setting Tool Included
- Stainless Steel Grade A4/316
- Chisel End Studs
- Plain Ended
- Zinc Plated and Clear Passivated (Min 5µm)
- Chisel End Studs
- Plain Ended
- Zinc Plated and Clear Passivated (Min 5µm)
- Chisel End Studs
- Setting Tool Included

RANGE AND LOAD DATA

CONSTRUCTION PRODUCTS

					R/	ANGE DATA					
	Thread	Stud	Drill	Fixture	Standard 8	mbedment	Shallow E	mbedment	Deep Em	bedment	1
Part Number	Diam (d) mm	Length (L) mm	Hole Diam. (d _o) mm	Clearance Hole (d _r) mm	Max. Fix. Thickness (t _{fa}) mm	Min. Hole Depth (h _o) mm**	Max. Fix. Thickness (t _{rx}) mm	Min. Hole Depth (h _e) mm	Max. Fix. Thickness (t _{fix}) mm	Min. Hole Depth (h _o) mm	Tightening Torque (T _{irs} Nm
			High T	ensile Grad	e 8.8 Zinc Pl	lated Yellow P	assivated Cl	nisel End Stud	ls		
JSTUD08110HT	M8	110	10	10	18	80	38	64		130	10
JSTUD10130HT	M10	130	12	12	25	90	40	80		180	20
JSTUD12160HT	M12	160	14	14	34	110	51	96		225	40
JSTUD16190HT	M16	190	18	18	42	128	44	128		320	80
JSTUD20260HT	M20	260	22	22	55	170	79	160		400	150
JSTUD24300HT	M24	300	26	26	55	210	82	192		480	200
JSTUD30380HT	M30	380	35	32	55	280	110	240		600	275
				Stain	ess Steel Gra	de A4/316 C	hisel End Stu	ids			
JSTUD081105SA4	M8	110	10	10	18	80	38	64	12	90	10
JSTUD10130SSA4	M10	130	12	12	25	90	40	80		125	20
JSTUD12160SSA4	M12	160	14	14	34	110	51	96		160	40
JSTUD16190SSA4	M16	190	18	18	42	128	44	128		235	80
JSTUD20260SSA4	M20	260	22	22	55	170	79	160		310	150
JSTUD24300SSA4	M24	300	26	26	55	210	82	192		390	200
			Sta	inless Steel	Grade A4/3	16 Plain Ende	ed and Chise	End Studs			
JSTUD08150PESS	M8	150	10	10	62	80	78	64	52	90	10
JSTUD10105PESS	765333	105	52500		5		15		•		1.150
JSTUD10150PESS	M10	150	12	12	50	90	60	80	15	125	20
JSTUD10200PESS		200			100		110		65	276.517	
JSTUD12110PESS		110			•		1				
JSTUD12150PESS	M12	150	14	14	27	110	41	96		160	40
JSTUD12200PESS		200	200	1.412	77		91		27		1999
JSTUD16110PESS		110									
JSTUD16250PESS	M16	250	18	18	104	128	104	128		235	80
JSTUD16350PESS		350		2025	204	1.11222	204	() () () () () () () () () () () () () (97	1026	122
JSTUD20200PESS		200		100	9	1.000	19	1000	•	112.021	212/10
JSTUD20400PESS	M20	400	22	22	209	170	219	160	69	310	150

* Deep Embedment Depth can be achieved by using suitable threaded rod cut to length: $L = h_0 + (t_{fix} + t_{Nut+Washel})$

** For the Vinylester Resin: h₀=h_{et}

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Control Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

Page 2 of 10

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

Vinylester Resin

					R/	ANGE DATA					
	Thread	Stud	Drill	Fixture	Standard E	mbedment	Shallow E	mbedment	Deep Em	ibedment	1
Part Number	Diam (d) mm	Length (L) mm	Hole Diam. (d _o) mm	Clearance Hole (d _r) mm	Max. Fix. Thickness (t _{fa}) mm	Min. Hole Depth (h _o) mm**	Max. Fix. Thickness (t _{fx}) mm	Min. Hole Depth (h _o) mm	Max. Fix. Thickness (t _{fi} ,) mm	Min. Hole Depth (h _o) mm	Tightening Torque (T _{iret} Nm
	u 1	Zin	c Plated	l Steel Grad	e 5.8 - Clear	Passivated Pl	ain Ended an	d Chisel End	Studs	2	~
JSTUD08150PE	M8	150	10	10	62	80	78	64	62	80	10
JSTUD10105PE		105			5		15				
JSTUD10150PE	M10	150	12	12	50	90	60	80	25	115	20
JSTUD10200PE		200			100		110		75		
JSTUD12110PE		110					1		•		
JSTUD12150PE	M12	150	14	14	27	110	41	96		145	40
JSTUD12200PE		200		77		91		42			
JSTUD16110PE		110									
JSTUD16250PE	M16	250	18	18	104	128	104	128	22	210	80
JSTUD16350PE	1	350			204		204		122		
JSTUD20200PE		200			9		19				
JSTUD20400PE	M20	400	22	22	209	170	219	160	99	280	150
			Zinc	Plated Stee	I Grade 5.8 -	Clear Passiva	ted and Chis	el End Studs			
JSTUD08110	M8	110	10	10	18	80	38	64	22	80	10
JSTUD10130	M10	130	12	12	25	90	40	80	5	115	20
JSTUD12160	M12	160	14	14	34	110	51	96	2	145	40
JSTUD16190	M16	190	18	18	42	128	44	128		210	80
JSTUD20260	M20	260	22	22	55	170	79	160		280	150
JSTUD24300	M24	300	26	26	55	210	82	192		355	200
JSTUD30380	M30	380	35	32	55	280	110	240		600	275

* Deep Embedment Depth can be achieved by using suitable threaded rod cut to length: $L = h_0 + (t_{fix} + t_{Nut+Washed})$ ** For the Vinylester Resin: h_=h_

O Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ

C Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

300ml c

GRADE 8.8 ZINC PLATED STUDS - NON-CRACKED CONCRETE

SHALLOW EMBEDMENT

CONSTRUCTION PRODUCTS

			Gr	ade 8.8 Zinc P	lated Studs Pe	rformance Da	ata (C20/25 no	n-cracked cond	rete)			
알았다가 물건 안전했다.	Minimum Hole Depth	Minimum Concrete Thickness	Characteristic Resistance kN		Design Resistance kN		Approved Resistance kN		Design Spacing (S) mm		Design Edge Distance (C) mm	
mm	mm	(h _{min}) mm	Tensile (N _{ex})	Shear (V _{Rk})	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8	64	100	17.6	15.0	9.8	12.0	7.0	8.6	200	40	100	130
10	80	110	25.1	23.0	14.0	18.4	10.0	13.1	240	40	120	180
12	96	130	34.4	34.0	19.1	27.2	13.6	19.4	270	50	140	250
16	128	170	57.9	63.0	32.2	50.4	23.0	36.0	350	70	180	390
20	160	205	85.5	98.0	47.5	78.4	33.9	56.0	430	140	220	550
24	192	245	115.8	141.0	64.3	112.8	46.0	80.6	500	210	250	720
30	240	310	124.4	248.8	59.2	165.9	42.3	118.5	520	520	260	920

STANDARD EMBEDMENT

			Gr	ade 8.8 Zinc P	lated Studs Pe	erformance Da	ata (C20/25 no	n-cracked cond	rete)			
	Minimum Hole Depth	Minimum Concrete Thickness	Characteristi k		Design R k	esistance N	k	Resistance N		pacing (S) m	0.010-0100 (2	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{Rk})	Shear (V _{Rk})	Tensile (N _{8d})	Shear (V _{Rd})	Tensile (N _{Ap})	Shear (V_{Ap})	Tensile	Shear	Tensile	Shear
8	80	110	22.1	15.0	12.3	12.0	8.8	8.6	200	40	100	120
10	90	120	28.3	23.0	15.7	18.4	11.2	13.1	240	50	120	170
12	110	140	39.4	34.0	21.9	27.2	15.6	19.4	270	60	140	230
16	128	170	57.9	63.0	32.2	50.4	23.0	36.0	350	70	180	390
20	170	215	90.8	98.0	50.4	78.4	36.0	56.0	430	100	220	530
24	210	270	126.7	141.0	70.4	112.8	50.3	80.6	500	140	250	670
30	280	350	145.1	224.0	69.1	179.2	49.4	128.0	520	420	260	920

DEEP EMBEDMENT

Technical Data Sheet

			Gr	ade 8.8 Zinc P	lated Studs Pe	rformance Da	ata (C20/25 no	n-cracked conc	rete)			
ACT 32 3 1000	Minimum Hole Depth (h _a)	Minimum Concrete Thickness	Characteristic Resistance kN		Design Resistance kN		Approved Resistance kN		Design Spacing (S) mm		Design Edge Distance (C mm	
mm	mm	(h _{min}) mm	Tensile (N _{iik})	Shear (V _{III})	Tensile (N _{Rd})	Shear (V _N)	Tensile (N _{Ap})	Shear (V _{Ag})	Tensile	Shear	Tensile	Shear
8	130	160	29.0	15.0	19.3	12.0	13.8	8.6	180	70	100	100
10	180	210	46.0	23.0	30.7	18.4	21.9	13.1	220	90	120	120
12	225	255	67.0	34.0	44.7	27.2	31.9	19.4	270	120	140	150
16	320	355	144.8	63.0	80.4	50.4	57.4	36.0	350	160	180	220
20	400	445	213.6	98.0	118.7	78.4	84.8	56.0	430	200	220	290
24	480	540	289.5	141.0	160.8	112.8	114.9	80.6	500	240	260	360
30	600	670	311.0	224.0	148.1	179.2	105.8	128.0	520	300	300	510

O Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex C Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

GRADE 8.8 ZINC PLATED STUDS - CRACKED CONCRETE

SHALLOW EMBEDMENT

				Grade 8.8 Zin	c Plated Studs	Performance	Data (C20/25)	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth (h,)	Concrete Thickness (h _{min})	Characteristi kl		Design R k	esistance N	Approved kl	149-140-180-20-1888-s	Design Sp m	oacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{gs})	Shear (V _R)	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	$\operatorname{Shear}(V_{_{Ap}})$	Tensile	Shear	Tensile	Shear
8					1	Not include	d in the ETA					
10	80	110	12.6	25.1	7.0	16.8	5.0	12.0	230	240	120	240
12	96	130	18.1	36.2	10.1	24.1	7.2	17.2	270	280	140	320
16	128	170	32.2	64.3	17.9	42.9	12.8	30.6	360	360	180	490
20	160	205	45.2	90.5	25.1	60.3	18.0	43.1	430	430	220	610
24	192	245	65.1	130.3	36.2	86.9	25.9	62.0	500	500	250	790
30					1	Not include	d in the ETA	,				

STANDARD EMBEDMENT

			3	Grade 8.8 Zin	c Plated Studs	Performance	Data (C20/25)	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth (h _o)	Minimum Concrete Thickness (h)	Characteristi k		Design R ki		k	Resistance N	Design Sp m		26682200	Distance (C) m
mm	mm	(h _{mia}) mm	Tensile (N _{sk})	Shear (V _{Rk})	Tensile (N _{8d})	Shear (V _{Rd})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8						Not include	d in the ETA	V			0 72	2
10	90	120	14.1	23.0	7.9	18.4	5.6	13.1	230	220	120	250
12	110	140	20.7	34.0	11.5	27.2	8.2	19.4	270	260	140	340
16	128	170	32.2	64.3	17.9	42.9	12.8	30.6	360	360	180	490
20	170	215	48.1	96.1	26.7	64.1	19.1	45.8	430	430	220	630
24	210	270	71.3	142.5	39.6	95.0	28.3	67.9	500	500	250	820
30					1	Not include	d in the ETA					

DEEP EMBEDMENT

				Grade 8.8 Zin	c Plated Studs	Performance	Data (C20/25	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth (h _o)	Minimum Concrete Thickness (h)	Characteristi kl		Design R k	esistance N	Approved k	Resistance N		oacing (S) m		Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{iik})	Shear (V _{III})	Tensile (N _{Rd})	Shear (V _{ad})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8			· · · · ·		1	Not include	d in the ETA					
10	180	210	28.3	23.0	15.7	18.4	11.2	13.1	230	90	120	160
12	225	255	42.4	34.0	23.6	27.2	16.8	19.4	270	120	140	210
16	320	355	80.4	63.0	44.7	50.4	31.9	36.0	360	160	180	320
20	400	445	113.1	98.0	62.8	78.4	44.9	56.0	430	200	220	440
24	480	540	162.9	141.0	90.5	112.8	64.6	80.6	500	240	250	570
30					1	Not include	d in the ETA	1				

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Contemporary Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

GRADE A4-70 STAINLESS STEEL STUDS - NON-CRACKED CONCRETE

SHALLOW EMBEDMENT

CONSTRUCTION PRODUCTS

			Grade	A4-70 Stainl	ess Steel Stud	s Performance	e Data (C20/25	non-cracked c	oncrete)			
Diam I (d)	Minimum Hole Depth (h,)	Minimum Concrete Thickness	Characteristi k	2월 2888 CONSERT 1 - CONSERTS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Approved Resistance kN		Design Spacing (S) mm		Design Edge Distance (C mm	
mm	mm	(h _{nis}) mm	Tensile (N _{ex})	Shear (V _R)	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	$\operatorname{Shear}\left(V_{_{Ap}}\right)$	Tensile	Shear	Tensile	Shear
8	64	100	17.7	13.0	9.8	8.3	7.0	6.0	200	40	100	90
10	80	110	25.1	20.0	14.0	12.8	10.0	9.2	240	40	120	120
12	96	130	34.4	30.0	19.1	19.2	13.6	13.7	270	50	140	170
16	128	170	57.9	55.0	32.2	35.3	23.0	25.2	350	70	180	260
20	160	205	85.5	86.0	47.5	55.1	33.9	39.4	430	80	220	370
24	192	245	115.8	124.0	64.3	79.5	46.0	56.8	500	100	250	480
30	240	310	124.4	196.0	59.2	125.6	42.3	89.7	520	220	260	670

STANDARD EMBEDMENT

			Grade	A4-70 Stainl	ess Steel Stud	s Performance	e Data (C20/25	non-cracked c	oncrete)			
Thread Diam (d)	Minimum Hole Depth (h _a)	Minimum Concrete Thickness	Characteristi k		Design R k		k	Resistance N	Design Sj m		Design Edge m	Distance (C) m
mm	mm	(h _{mia}) mm	Tensile (N _{sk})	Shear (V _{sk})	Tensile (N _{Rd})	Shear (V _{Ed})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8	80	110	22.1	13.0	12.3	8.3	8.8	6.0	200	40	100	80
10	90	120	28.3	20.0	15.7	12.8	11.2	9.2	240	50	120	120
12	110	140	39.4	30.0	21.9	19.2	15.6	13.7	270	60	140	160
16	128	170	57.9	55.0	32.2	35.3	23.0	25.2	350	70	180	260
20	170	215	90.8	86.0	50.4	55.1	36.0	39.4	430	90	220	350
24	210	270	126.7	124.0	70.4	79.5	50.3	56.8	500	110	250	450
30	280	350	145.1	196.0	69.1	125.6	49.4	89.7	520	140	260	600

DEEP EMBEDMENT

			Grade	A4-70 Stainl	ess Steel Stud	Performance	e Data (C20/25	non-cracked c	oncrete)			
Thread Diam (d)	Minimum Hole Depth (h _a)	Minimum Concrete Thickness	Characteristi k	Conservation and the	Design R k	esistance N	CONTRACT/	Resistance N		pacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{itk})	Shear (V _{IIA})	Tensile (N _{Rd})	Shear (V _N)	Tensile (N _{Ap})	Shear (V _{AD})	Tensile	Shear	Tensile	Shear
8	90	120	26.0	13.0	13.7	8.3	9.8	6.0	190	50	100	80
10	125	155	41.0	20.0	21.6	12.8	15.4	9.2	230	70	120	100
12	160	190	59.0	30.0	31.1	19.2	22.2	13.7	260	80	140	120
16	235	270	110.0	55.0	57.9	35.3	41.4	25.2	340	120	180	180
20	310	355	172.0	86.0	90.5	55.1	64.7	39.4	410	160	210	230
24	390	450	247.0	124.0	130.0	79,5	92.9	56.8	490	200	260	290
30	600	670	311.0	196.0	148.1	125.6	105.8	89.7	520	300	300	370

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Contemporary Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

GRADE A4-70 STAINLESS STEEL STUDS - CRACKED CONCRETE

SHALLOW EMBEDMENT

CONSTRUCTION PRODUCTS

			Gra	ide A4-70 Sta	inless Steel Stu	uds Performa	nce Data (C20/	25 cracked con	crete)			
Thread Diam (d)	Minimum Hole Depth (h _o)	Minimum Concrete Thickness	Characteristi kl		Design R ki	esistance N	Approved k	248-14-180-10-1884-million	Design Sp m	1990 a m anan	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{gs})	Shear (V _R)	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8					1	Not include	d in the ETA					
10	80	110	12.6	20.0	7.0	12.8	5.0	9.2	240	90	120	180
12	96	130	18.1	30.0	8.6	19.2	6.2	13.7	270	130	140	250
16	128	170	32.2	55.0	17.9	35.3	12.8	25.2	360	200	180	390
20	160	205	45.2	86.0	25.1	55.1	18.0	39.4	430	340	220	550
24	192	245	65.1	124.0	36.2	79.5	25.9	56.8	500	400	250	720
30					1	Not include	d in the ETA					

STANDARD EMBEDMENT

			Gra	ide A4-70 Sta	inless Steel Stu	ıds Performai	nce Data (C20/	25 cracked con	crete)			
Thread Diam (d)	Minimum Hole Depth	Minimum Concrete Thickness	Characteristi k		Design R ki		k	Resistance N	Design Sp m		266822003	Distance (C) m
mm	(h _o) mm	(h _{mia}) mm	Tensile (N _{sk})	Shear (V _{sk})	Tensile (N _{8d})	Shear (V _{Rd})	Tensile (N _{Ap})	Shear (V_{Ap})	Tensile	Shear	Tensile	Shear
8						Not include	d in the ETA	V:				
10	90	120	14.1	20.0	7.9	12.8	5.6	9.2	240	50	120	170
12	110	140	20.7	30.0	9.9	19.2	7.1	13.7	270	60	140	230
16	128	170	32.2	55.0	17.9	35.3	12.8	25.2	360	200	180	390
20	170	215	48.1	86.0	26.7	55.1	19.1	39.4	430	280	220	530
24	210	270	71.3	124.0	39.6	79.5	28.3	56.8	500	300	250	670
30			ñ		1	Not include	d in the ETA					

DEEP EMBEDMENT

			Gra	ide A4-70 Sta	inless Steel Stu	ıds Performaı	nce Data (C20/	25 cracked con	crete)			
Thread Diam (d)	Minimum Hole Depth (h _a)	Minimum Concrete Thickness	Characteristi k		Design R k	esistance N	Approved k	Resistance N		pacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{ex})	Shear (V _{III})	Tensile (N _{Rd})	Shear (V _{kd})	Tensile (N _{Ap})	Shear (V _{Ag})	Tensile	Shear	Tensile	Shear
8			••••••		1	Not include	d in the ETA					
10	175	205	27.5	20.0	15.3	12.8	10.9	9.2	240	90	120	120
12	240	270	45.2	30.0	21.5	19.2	15.4	13.7	270	120	140	150
16	320	355	80.4	55.0	44.7	35.3	31.9	25.2	360	160	180	220
20	400	445	113.1	86.0	62.8	55.1	44.9	39.4	430	200	220	290
24	480	540	162.9	124.0	90.5	79.5	64.6	56.8	500	240	250	360
30					1	Not include	d in the ETA	1				

O Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ

C Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

300ml e

Re01 April 2018

GRADE 5.8 ZINC PLATED STUDS - NON-CRACKED CONCRETE

SHALLOW EMBEDMENT

CONSTRUCTION PRODUCTS

			Gr	ade 5.8 Zinc P	lated Studs Pe	rformance Da	ata (C20/25 no	n-cracked cond	trete)			
Thread Diam (d)	Minimum Hole Depth (h,)	Minimum Concrete Thickness	Characteristi kl		Design R k	esistance N	01000000000000000	Resistance N		pacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{gs})	Shear (V _R)	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8	64	100	17.7	9.0	9.8	7.2	7.0	5.1	200	40	100	70
10	80	110	25.1	15.0	14.0	12.0	10.0	8.6	240	40	120	110
12	96	130	34.4	21.0	19.1	16.8	13.6	12.0	270	50	140	140
16	128	170	57.9	39.0	32.2	31.2	23.0	22.3	350	70	180	230
20	160	205	85.5	61.0	47.5	48.8	33.9	34.9	430	80	220	320
24	192	245	115.8	88.0	64.3	70.4	46.0	50.3	500	100	250	420
30	240	310	124.4	140.0	59.2	112.0	42.3	80.0	520	120	260	580

STANDARD EMBEDMENT

Thread Diam	Minimum Hole Depth	Minimum Concrete Thickness	Characteristi kl		Design R ki		10000000000000000000000000000000000000	Resistance N	Design Sp m		Design Edge m	Distance (C) m
(d) mm	(h _o) mm	(h _{min}) mm	Tensile (N ₈₄)	Shear (V _{Rk})	Tensile (N _{8d})	Shear (V _{Rd})	Tensile (N _{Ap})	$\operatorname{Shear}{(V_{A_{\beta}})}$	Tensile	Shear	Tensile	Shear
8	80	110	18.0	9.0	12.0	7.2	8.6	5.1	190	40	100	70
10	90	120	28.3	15.0	15.7	12.0	11.2	8.6	240	50	120	110
12	110	140	39.4	21.0	21.9	16.8	15.6	12.0	270	60	140	130
16	128	170	57.9	39.0	32.2	31.2	23.0	22.3	350	70	180	230
20	170	215	90.8	61.0	50.4	48.8	36.0	34.9	430	90	220	310
24	210	270	126.7	88.0	70.4	70.4	50.3	50.3	500	110	250	390
30	280	350	145.1	140.0	69.1	112.0	49.4	80.0	520	140	260	520

DEEP EMBEDMENT

			Gr	ade 5.8 Zinc P	lated Studs Pe	rformance Da	ata (C20/25 no	n-cracked conc	rete)			
Thread Diam (d)	Minimum Hole Depth (h _o)	Minimum Concrete Thickness	Characteristi k	c Resistance N	Design R ki		Approved k	Sector Construction		oacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{itk})	Shear (V _{III})	Tensile (N _{Rd})	Shear (V _N)	Tensile (N _{Ap})	Shear (V _{Ag})	Tensile	Shear	Tensile	Shear
8			145			(#)	1.4			1961	*	
10	115	145	29.0	15.0	19.3	12.0	13.8	8.6	210	60	120	90
12	145	175	42.0	21.0	28.0	16.8	20.0	12.0	250	80	130	110
16	210	245	79.0	39.0	52.7	31.2	37.6	22.3	350	110	180	170
20	280	325	123.0	61.0	82.0	48.8	58.6	34.9	420	140	210	210
24	355	410	177.0	88.0	118.0	70.4	84.3	50.3	490	180	260	270
30	600	670	311.0	140.0	148.1	112.0	105.8	80.0	520	300	300	330

Page 8 of 10

* Increased embedment depth limited by steel strength.

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ

Control Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140 jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

GRADE 5.8 ZINC PLATED STUDS - CRACKED CONCRETE

SHALLOW EMBEDMENT

				Grade 5.8 Zin	c Plated Studs	Performance	Data (C20/25)	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth (h,)	Minimum Concrete Thickness	Characteristi kl		Design R k	esistance N	Approved kl	149-140-180-20-1888-s	Design Sj m	oacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{gs})	Shear (V _R)	Tensile (N _{Rd})	Shear (V _{ed})	Tensile (N _{Ap})	$\operatorname{Shear}(V_{_{Ap}})$	Tensile	Shear	Tensile	Shear
8					1	Not include	d in the ETA					
10	80	110	12.6	15.0	7.0	12.0	5.0	8.6	240	70	120	170
12	96	130	18.1	21.0	10.1	16.8	7.2	12.0	270	70	140	210
16	128	170	32.2	39.0	17.9	31.2	12.8	22.3	350	120	180	340
20	160	205	45.2	61.0	25.1	48.8	18.0	34.9	430	230	220	480
24	192	245	65.1	88.0	36.2	70.4	25.9	50.3	500	280	250	620
30					1	Not include	d in the ETA					

STANDARD EMBEDMENT

				Grade 5.8 Zin	c Plated Studs	Performance	Data (C20/25)	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth	Minimum Concrete Thickness	Characteristi ki		Design R ki	esistance N	Approved k	21-20-2272223-5-20	Design Sp m		0.635.2109.53	Distance (C) m
mm	(h _o) mm	(h _{mia}) mm	Tensile (N _{sk})	Shear (V _{Rk})	Tensile (N _{Rd})	Shear (V _{Rd})	Tensile (N _{Ap})	Shear (V_{Ap})	Tensile	Shear	Tensile	Shear
8					1	Not include	d in the ETA	V:			0 2	
10	90	120	14.1	15.0	7.9	12.0	5.6	8.6	240	70	120	160
12	110	140	20.7	21.0	11.5	16.8	8.2	12.0	270	70	140	200
16	128	170	32.2	39.0	17.9	31.2	12.8	22.3	350	120	180	340
20	170	215	48.1	61.0	26.7	48.8	19.1	34.9	430	180	220	460
24	210	270	71.3	88.0	39.6	70.4	28.3	50.3	500	190	250	580
30			1		1	Not include	d in the ETA					

DEEP EMBEDMENT

				Grade 5.8 Zin	c Plated Studs	Performance	Data (C20/25	cracked concre	te)			
Thread Diam (d)	Minimum Hole Depth (h _a)	Minimum Concrete Thickness	Characteristi k		Design R k	esistance N	Approved k	Sector and a sector sector	Design Sj m	oacing (S) m	Design Edge m	Distance (C) m
mm	mm	(h _{min}) mm	Tensile (N _{ex})	Shear (V _{IIX})	Tensile (N _{Rd})	Shear (V _{ad})	Tensile (N _{Ap})	Shear (V _{Ap})	Tensile	Shear	Tensile	Shear
8			· · · · ·		1	Not include	d in the ETA					
10	200	230	31.4	15.0	17.5	12.0	12.5	8.6	240	100	120	110
12	240	270	45.2	21.0	25.1	16.8	18.0	12.0	270	130	140	140
16	255	290	64.1	39.0	35.6	31.2	25.4	22.3	350	130	180	210
20	320	365	90.5	61.0	50.3	48.8	35.9	34.9	430	160	220	290
24	400	460	135.7	88.0	75.4	70.4	53.9	50.3	500	200	250	360
30					1	Not include	d in the ETA	l				

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Contemporary Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140

jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

CONSTRUCTION PRODUCTS

		INFLUENCE OF COL	VCRETE STRENGTH		
Concrete	strength	C20/25	C30/37	C40/50	C50/60
Cylinder	N/mm ²	20	30	40	50
Cube	N/mm ²	25	37	50	60
Factor	Cracked	1.0	1.12	1.23	1.30

Important Note:

When using concrete factors ensure that loads do not exceed Steel Design Resistance.

Load Type	Steel Grade	Threaded Rod Size						
		M8	M10	M12	M16	M20	M24	M30
Tensile (kN)	High Tensile Grade 8.8	19.3	30.7	44.7	84.0	130.7	188.0	299.3
	Stainless Steel Grade A4-70	13.7	21.6	31.1	57.9	90.5	130.0	206.8
	Grade 5.8	12.0	19.3	28.0	52.7	82.0	118.0	187.3
Shear (kN)	High Tensile Grade 8.8	12.0	18.4	27.2	50.4	78.4	112.8	179.2
	Stainless Steel Grade A4-70	8.3	12.8	19.2	35.3	55.1	79.5	125.6
	Grade 5.8	7.2	12.0	16.8	31.2	48.8	70.4	112.0

For variations in structure thickness, reduced spacing and edge calculations download the free Anchor Calculation Program from www.jcpfixings.co.uk

INSTALLATION INSTRUCTIONS

-Drill correct diameter hole to corresponding depth

-Clean hole by brushing, blowing to remove drilling debris and dust: 2×Blowing 2×Brushing 2×Brushing 2×Brushing 2×Blowing

-Attach nozzle to cartridge

-Extrude first part to waste until an even colour is achieved

-Fill hole 1/3 to 1/2 full starting from the bottom of the hole

-Insert stud into base material by hand using a twisting motion

-Allow resin to cure

-Attach fixture

-Tighten with torque wrench to recommended torque

Unit 14 Teddington Business Park Station Rd., Teddington, Middlesex TW11 9BQ Control Tel: +44 (0)20 8943 1800 Fax:+44 (0)20 8943 1140 jcpenquiries@owlett-jaton.com www.jcpfixings.co.uk

Re01 April 2018